1
|
Wang T, Liu Y, Dong J, Wang Y, Li D, Long X, Wang B, Xia Y. Preparation of high-strength photochromic alginate fibers based on the study of flame-retardant properties. Int J Biol Macromol 2024; 258:128889. [PMID: 38123039 DOI: 10.1016/j.ijbiomac.2023.128889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Color-changing fibers have attracted much attention for their wide applications in camouflage, security warnings, and anti-counterfeiting. The inorganic color-changing material tungsten trioxide (WO3) has been widely investigated for its good stability, controllability, and ease of synthesis. In this study, photochromic alginate fibers (WO3@Ca-Alg) were prepared by incorporating UV-responsive hybrid tungsten trioxide nanoparticles in the fiber production process. The prepared photochromic alginate fibers changed from white to dark blue after 30 min of UV irradiation and returned to their original color after 64 h. It can be seen that WO3@Ca-Alg has the advantage of long color duration. The strength of this fiber reached 2.61 cN/dtex and the limiting oxygen index (LOI) was 40.9 %, which indicates that the fiber exhibited mechanical resistance and flame-retardant properties. After the cross-linking of WO3@Ca-Alg by sodium tetraborate, a new core-shell structure was generated, which was able to encapsulate tungsten trioxide in it, thus reducing the amount of tungsten trioxide loss, and its salt and washing resistance was greatly improved. This photochromic alginate fiber can be mass produced and spun into yarn.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Yongjiao Liu
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Jinfeng Dong
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Yan Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Bingbing Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
2
|
Monothetic Analysis and Response Surface Methodology Optimization of Calcium Alginate Microcapsules Characteristics. Polymers (Basel) 2022; 14:polym14040709. [PMID: 35215622 PMCID: PMC8877230 DOI: 10.3390/polym14040709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Owing to bio-polymer’s low-cost, environmental friendliness and mechanically stable nature, calcium alginate microcapsules have attracted much interest for their applications in numerous fields. Among the common production methods, the Electrospraying technique has shown a great potential due to smaller shape capsule production and ease of control of independent affecting parameters. Although one factor at a time (OFAT) can predict the trends of parameter effect on size and sphericity, it is inefficient in explaining the complex parameter interaction of the electrospray process. In the current study, the effects of the main parameters affecting on size and sphericity of the microcapsules using OFAT were optimized to attain calcium alginate microcapsules with an average diameter below 100 µm. Furthermore, we propose a statistical model employing the Surface Responses Methodology (RSM) and Central Composite Design (CDD) to generate a quadratic order linear regression model for the microcapsule diameter and sphericity coefficient. Experimentally, microcapsules with a size of 92.586 µm and sphericity coefficient of 0.771 were predicted and obtained from an alginate concentration of 2.013 w/v, with a flowrate of 0.560 mL/h, a needle size of 27 G and a 2.024 w/v calcium chloride concentration as optimum parameters. The optimization processes were successfully aligned towards formation of the spherical microcapsules with smaller average diameter of less than 100 µm, owing to the applied high voltage that reached up to 21 kV.
Collapse
|