1
|
Peng L, Duan J, Liang Y, Zhang H, Duan C, Liu S. Recent Advances in Metal-Organic Frameworks and Their Derivatives for Adsorption of Radioactive Iodine. Molecules 2024; 29:4170. [PMID: 39275018 PMCID: PMC11397681 DOI: 10.3390/molecules29174170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/16/2024] Open
Abstract
Radioactive iodine (131I) with a short half-life of ~8.02 days is one of the most commonly used nuclides in nuclear medicine. However, 131I easily poses a significant risk to human health and ecological environment. Therefore, there is an urgent need to develop a secure and efficient strategy to capture and store radioactive iodine. Metal-organic frameworks (MOFs) are a new generation of sorbents with outstanding physical and chemical properties, rendering them attractive candidates for the adsorption and immobilization of iodine. This review focuses on recent research advancements in mechanisms underlying iodine adsorption over MOFs and their derivatives, including van der Waals interactions, complexing interactions, and chemical precipitation. Furthermore, this review concludes by outlining the challenges and opportunities for the safe disposal of radioactive iodine from the perspective of the material design and system evaluation based on our knowledge. Thus, this paper aims to offer necessary information regarding the large-scale production of MOFs for iodine adsorption.
Collapse
Affiliation(s)
- Li Peng
- Department of Radiology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Jiali Duan
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
| | - Yu Liang
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
| | - Haiqi Zhang
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chongxiong Duan
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
| | - Sibin Liu
- Department of Radiology, School of Medicine, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
2
|
Jiang ZH, Zhang X, Jin J, Jiang S, Bai FY, Xing YH. Amino-Functionalized NDI-Based MOFs as Unusual "Turn On" and "Turn Off" Fluorescent Sensors for Phenolic Pollutants with Double Solvent Channel Response and Iodine Adsorbents. Inorg Chem 2024; 63:14559-14569. [PMID: 39031913 DOI: 10.1021/acs.inorgchem.4c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Regulating mixed ligands to change the functional properties of metal-organic frameworks (MOFs) has been an important topic; especially, the structural changes have significant implications for the transformation of sensing response in different solvent channels. Herein, two [Cd (DPNDI) (NH2-BDC)0.5(NO3)]·2.25DMF (1) and [Cd(DPNDI)(NH2-AIPA)]·0.5DMF (2) (DPNDI = N,N-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide, NH2-BDC = 2-amino terephthalic acid, NH2-AIPA = 5-aminoisophthalic acid) were synthesized by the solvothermal method. Structural analysis shows that complex 1 has a two-dimensional planar network structure and complex 2 exhibits a three-dimensional network structure, endowing its potential as an efficient fluorescence sensor for phenolic compound detection under different solvent environments. Both complexes showed high fluorescence quenching sensitivity to phenolics in a water medium. Conversely, complex 1 showed a fluorescence enhancement response to phenolic pollutants in an ethanol system with significantly low detection limits and recyclability. The detection limits were 0.58 μM for TNP, 1.3 μM for DNP, and 2.43 μM for PCP. In addition, the uncoordinated amino groups in the complexes promote them to exhibit excellent iodine adsorption performance. Especially, complex 2 can serve as an adsorbent for iodine in cyclohexane solution with better adsorption efficiency than that of complex 1, and its adsorption capacity can reach 505 mg/g. The mixed ligands regulation strategy of NDI-based MOFs will open up an effective avenue for the conversion of fluorescence signals in dual-solvent channels and play simultaneously important roles in multiple applications.
Collapse
Affiliation(s)
- Zhi Han Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Xue Zhang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Jing Jin
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P.R. China
| |
Collapse
|
3
|
Tao Q, Zhang X, Jing L, Sun L, Dang P. Construction of Ketoenamine-Based Covalent Organic Frameworks with Electron-Rich Sites for Efficient and Rapid Removal of Iodine from Solution. Molecules 2023; 28:8151. [PMID: 38138639 PMCID: PMC10745408 DOI: 10.3390/molecules28248151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Porous covalent organic frameworks (COFs) have been widely used for the efficient removal of iodine from solution due to their abundance of electron-rich sites. In this study, two kinds of ketoenamine-based COFs, TpBD-(OMe)2 and TpBD-Me2, are successfully synthesized via Schiff base reaction under solvothermal conditions using 1, 3, 5-triformylphoroglucinol as aldehyde monomer, o-tolidine and o-dianisidine as amino monomers. The ability of TpBD-(OMe)2 and TpBD-Me2 to adsorb iodine in cyclohexane or aqueous solutions has been quantitatively analyzed and interpreted in terms of adsorption sites. TpBD-Me2 possesses two adsorption sites, -NH- and -C=O, and exhibits an adsorption capacity of 681.67 mg/g in cyclohexane, with an initial adsorption rate of 0.6 g/mol/min with respect to COF unit cell. The adsorption capacity of TpBD-(OMe)2 can be as high as 728.77 mg/g, and the initial adsorption rate of TpBD-(OMe)2 can reach 1.2 g/mol/min in the presence of oxygen atoms between the methyl group and the benzene ring. Compared with TpBD-Me2, the higher adsorption capacity and adsorption rate of TpBD-(OMe)2 towards iodine are not only reflected in organic solvents, but also in aqueous solutions. It is proven through X-ray photoelectron spectroscopy and Raman spectroscopy that iodine exists in the form of I2, I3-, and I5- within TpBD-(OMe)2 and TpBD-Me2 after adsorption. This work not only expands the application of COFs in the field of iodine adsorption, but also provides research ideas and important an experimental basis for the optimization of iodine adsorption sites.
Collapse
Affiliation(s)
- Qi Tao
- College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
| | - Xiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Liping Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Lu Sun
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
4
|
Shi Z, Huang X, Zhao Y, Li J, Tian YQ, Zhang PP, Zhu M, Zhao M. Construction of a novel ursolic acid-based supramolecular gel for efficient removal of iodine from solution. ENVIRONMENTAL RESEARCH 2023; 235:116617. [PMID: 37437868 DOI: 10.1016/j.envres.2023.116617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Pentacyclic triterpenes is a natural amphipathic product which possess a rigid backbone and several polar functional groups such as hydroxyl, carbonyl and carboxyl groups. The amphipathic character makes it easy to realize self-assemble into complex nano structure and therefore attract extensive attention due to the simple synthetic processes and renewable raw materials. Hence, a novel Ursolic acid-based hydrogel was prepared successfully via a simple self-assembly of triterpenoid derivative in methanol by capture water molecule in air. The resulting hydrogel show a porous morphology and good elasticity including strong heat resistance. Based on the characteristic above, the hydrogel showed a good iodine adsorption capacity and can removal 75.0% of the iodine from cyclohexane solution and 66.3% from aqueous solution within 36 h. Data analysis indicate that all the iodine adsorption process are dominated by chemisorption and belongs to the multi-site adsorption on heterogenous surfaces. In addition, the obtained hydrogel also possesses a good recyclability which can maintain more than 82% of its capacity after 5 cycles. The simple preparation method and easily available raw materials endow it a great potential in future pollutant treatment.
Collapse
Affiliation(s)
- Zhichun Shi
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China.
| | - Xiuqi Huang
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China
| | - Yingnan Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| | - Yan Qing Tian
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China
| | - Piao Piao Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Wenhua Street No.42, Qiqihar, Heilongjiang, 161006, China; Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar, Heilongjiang, 161006, China
| |
Collapse
|
5
|
Feng Y, Wu LH, Zhang CH, Zhou BX, Zheng SR, Zhang WG, Cai SL, Fan J. Porous amorphous metal-organic frameworks based on heterotopic triangular ligands for iodine and high-capacity dye adsorption. Dalton Trans 2023; 52:12087-12097. [PMID: 37581335 DOI: 10.1039/d3dt01350b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The research on amorphous metal-organic frameworks (aMOFs) is still in its infancy, and designing and constructing aMOFs with functional pores remains a challenge. Two aMOFs based on Co(II) and heterotopic triangular ligands with large conjugated aromatic planes, namely aMOF-1 and aMOF-2, were constructed and characterized by IR, XPS, EA, ICP, XANS and so on. aMOF-1 possesses mesopores, whereas aMOF-2 possesses micropores. The porosity, conjugated aromatic plane and uncoordinated N atoms in the framework allow these aMOFs to adsorb iodine and dyes. The iodine adsorption capacity of aMOF-1 is 3.3 g per g, which is higher than that of aMOF-2 (0.56 g per g), mainly due to the expansion or swelling of aMOF-1 after iodine adsorption. The uptake of cationic dyes by aMOF-2 showed more rapid kinetics and a higher removal rate than that by aMOF-1, mainly due to the difference in the porosity and surface charge. Although the surface charges of aMOF-1 and aMOF-2 are negative, both of them showed significantly faster adsorption kinetics toward anionic dyes, among which methyl orange (MO) and Congo red (CR) can be removed in 5 min. This occurs possibly because the quick adsorption of Na+ ions alters the surface charge of the framework and promotes dye uptake. The adsorption capacities of aMOF-1 for MO and CR reached 921 and 2417 mg g-1, respectively. The correlation data for aMOF-2 are 1042 and 1625 mg g-1, respectively. All adsorption capacities are among the highest compared to many cMOFs. Adsorption in mixed dye solution is found to be charge-dependent, kinetic-dependent, and synergetic in these systems. The porosity, surface charge regulation during adsorption, weak interactions and multiple adsorption processes contribute to the dye adsorption performance.
Collapse
Affiliation(s)
- Ying Feng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Liang-Hua Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Chu-Hong Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Bing-Xun Zhou
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Sheng-Run Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Wei-Guang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Song-Liang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China.
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
6
|
Xian JY, Huang ZY, Xie XX, Lin CJ, Zhang XJ, Song HY, Zheng SR. A cationic nanotubular metal-organic framework for the removal of Cr2O72– and Iodine. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2022. [DOI: 10.1016/j.cjsc.2022.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Feng Y, Liang FC, Huang ZY, Xie XX, Cai SL, Fan J, Zhang WG, Zheng SR. Regulating the Porosity and Iodine Adsorption Properties of Metal-Organic Framework Glass via an Ammonia-Immersion Approach. Inorg Chem 2022; 61:16981-16985. [PMID: 36251482 DOI: 10.1021/acs.inorgchem.2c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic framework (MOF) glass is a new type of glass material, but it usually lacks sufficient porosity. Thus, regulating the pore structure of MOF glass to improve its adsorption performance is very important. Herein, we found that the porosity of MOF glasses agZIF-62 and agZIF-76 can be regulated via an ammonia-immersion approach. After ammonia immersion, the resulting agZIF-62-NH3 and agZIF-76-NH3 could be maintained in their glass states or converted to their amorphous states, respectively. Their porosity changed according to the gas adsorption experiments. Notably, compared with agZIF-62 and agZIF-76, the iodine uptake capacities for agZIF-62-NH3 and agZIF-76NH3 increased by 12 and 21 times, respectively. This work shows that the subsequent treatment of MOF glass can regulate their adsorption performance.
Collapse
Affiliation(s)
- Ying Feng
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Fu-Chang Liang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zi-Yuan Huang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Xue-Xian Xie
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Song-Liang Cai
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China.,SCNU Qingyuan Institute of Science and Technology Innovation Company, Ltd., Qingyuan 511517, P. R. China
| | - Jun Fan
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China.,SCNU Qingyuan Institute of Science and Technology Innovation Company, Ltd., Qingyuan 511517, P. R. China
| | - Wei-Guang Zhang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China.,SCNU Qingyuan Institute of Science and Technology Innovation Company, Ltd., Qingyuan 511517, P. R. China
| | - Sheng-Run Zheng
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China.,SCNU Qingyuan Institute of Science and Technology Innovation Company, Ltd., Qingyuan 511517, P. R. China
| |
Collapse
|
8
|
Baig N, Shetty S, Habib SS, Husain AA, Al-Mousawi S, Alameddine B. Synthesis of Iron(II) Clathrochelate-Based Poly(vinylene sulfide) with Tetraphenylbenzene Bridging Units and Their Selective Oxidation into Their Corresponding Poly(vinylene sulfone) Copolymers: Promising Materials for Iodine Capture. Polymers (Basel) 2022; 14:polym14183727. [PMID: 36145872 PMCID: PMC9504420 DOI: 10.3390/polym14183727] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
The development of a simple and efficient synthetic methodology to engineer functional polymer materials for gas adsorption is necessary due to its relevance for various applications. Herein, we report the synthesis of metalorganic poly(vinylene sulfide) copolymers CTP1-3 with iron(II) clathrochelate of various side groups connected by tetraphenylbenzene units. CTP1-3 were subsequently oxidized into their respective poly(vinylene sulfone) copolymers CTP4-6 under green reaction conditions. The target copolymers CTP1-6 were characterized using various instrumental analysis techniques. Examination of the iodine adsorption properties of the copolymers revealed high iodine uptake properties, reaching 2360 mg g−1 for CTP2, and whose reusability tests proved its efficient regeneration, thus proving the importance of iron(II) clathrochelate polymers in iodine capture.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
| | - Sameh S. Habib
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Ali A. Husain
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
| | - Saleh Al-Mousawi
- Department of Chemistry Kuwait City, Kuwait University, P.O. Box 12613, Safat 13060, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
- Functional Materials Group, GUST, Hawally 32093, Kuwait
- Correspondence: (S.A.-M.); (B.A.); Tel.: +965-2530-7111 (B.A.)
| |
Collapse
|