1
|
Zhang X, Mao L, He R, Shi Y, Li L, Li S, Zhu C, Zhang Y, Ma D. Tunable cyclic operation of dissipative molecular switches based on anion recognition. Chem Commun (Camb) 2024; 60:1180-1183. [PMID: 38193867 DOI: 10.1039/d3cc05912j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Artificial dissipative molecular switches based on anion recognition are of great importance to simulate biological functions and construct smart materials. Five activated carboxylic acids are used as chemical fuels for dissipative molecular switches, which consist of an imidazolium macrocyclic host and a carboxylate anionic guest. By choosing different types of chemical fuels and using varied fuel concentrations, the rates of cyclic operations are tunable. The operation is capable of undergoing at least three cycles.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lijun Mao
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Rongjing He
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanting Shi
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Lingyi Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Shuo Li
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Chenghao Zhu
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Yanjing Zhang
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| | - Da Ma
- School of Pharmaceutical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
2
|
Jiang S, Wang S, Zhao Z, Ma D. A ratiometric fluorescent probe for the detection of biological thiols based on a new supramolecular design. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123167. [PMID: 37487288 DOI: 10.1016/j.saa.2023.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
A new ratiometric fluorescent probe is designed and prepared based on the concept of supramolecular encapsulation and dye competition. This supramolecular probe is based on two commercially-available dyes, one common guest and a simple-to-synthesize host. Fluorescence spectroscopy confirms that the supramolecular probe is capable of detecting thiols quantitatively with a broad linear region in phosphate buffered saline or fetal bovine serum. Mechanistic study shows a reaction between thiol specie and the guest to alter the distribution of encapsulated dyes. The supramolecular probes are demonstrated to quantitatively detect extracellular biological thiols by plate reader, which shows it keeps its effectiveness in complex buffered systems.
Collapse
Affiliation(s)
- Siyang Jiang
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China; Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shuyi Wang
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China; Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zizhen Zhao
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China; Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China.
| |
Collapse
|
3
|
Peng WC, Lei Z, Lin QH, Wu Y, Yang JY, Wang H, Zhou W, Zhang DW, Li ZT, Ma D. Acyclic Cucurbit[n]urils: Effective Taste Masking Nanocontainers for Cationic Bitter Compounds. Chempluschem 2023; 88:e202300465. [PMID: 37752086 DOI: 10.1002/cplu.202300465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
New acyclic cucurbit[n]urils (ACBs) with eight carboxylate groups were synthesized. These hosts are highly soluble in water, and can form stable inclusion complexes with cationic bitter compounds. ACBs are confirmed to be non-toxic and biocompatible. Two-bottle preference (TBP) tests on mice show that all ACBs are tasteless to mammals. ACBs are discovered to mask the bitterness of berberine and denatonium benzoate, but not quinine hydrochloride, due to different binding modes.
Collapse
Affiliation(s)
- Wen-Chang Peng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Zhuo Lei
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Qi-Han Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Jing-Yu Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Handan Road 220, Shanghai, 200438, P. R. China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Shifu Avenue 1139 Jiaojiang, Zhejiang, 318000, P. R. China
| |
Collapse
|
4
|
Zhao Z, Yang J, Liu Y, Wang S, Zhou W, Li ZT, Zhang DW, Ma D. Acyclic cucurbit[ n]uril-based nanosponges significantly enhance the photodynamic therapeutic efficacy of temoporfin in vitro and in vivo. J Mater Chem B 2023; 11:9027-9034. [PMID: 37721029 DOI: 10.1039/d3tb01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Acyclic cucurbit[n]uril-based nanosponges are prepared based on supramolecular vesicle-templated cross-linking. The nanosponges are capable of encapsulating the clinically approved photodynamic therapeutic (PDT) drug temoporfin. When loaded with nanosponges, the PDT bioactivity of temoporfin is enhanced 7.5-fold for HeLa cancer cells and 20.8 fold for B16-F10 cancer cells, respectively. The reason for the significant improvement in PDT efficacy is confirmed to be an enhanced cell uptake by confocal laser scanning microscopy and flow cytometry. Animal studies show that nanosponges could dramatically increase the tumor suppression effect of temoporfin. In vitro and in vivo experiments demonstrate that nanosponges are nontoxic and biocompatible.
Collapse
Affiliation(s)
- Zizhen Zhao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jingyu Yang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
5
|
Zhang S, Chen L, Zhou C, Gao C, Yang J, Liao X, Yang B. Supramolecular fluorescent probe based on acyclic cucurbituril for detection of cancer Labels in human urine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122515. [PMID: 36842211 DOI: 10.1016/j.saa.2023.122515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Spermine (Spm) and spermidine (Spmd) are considered as potential biomarker for early diagnosis of human cancer. Herein, a novel acyclic cucurbituril derivative (UL-ACB) was firstly designed and synthesized, which fluoresces at 460 nm after excitation at 365 nm. UL-ACB is rich in oxygen atoms which are capable of forming coordinate bonds with copper (Cu2+) that cause quenching of UL-ACB fluorescence. Moreover, the addition of biological endogenous substances Spm and Spmd can turn on fluorescence of UL-ACB. Interestingly, the probe showed a remarkable detection efficiency for Spm and Spmd in human urine (the detection limits of Spm and Spmd were 0.156 μM and 0.762 μM, and the linear ranges are 0.156 ∼ 43.06 μM and 0.762 ∼ 29.10 μM), which completely covered the early diagnosis of urinary Spm (1 ∼ 10 μM) and urine Spmd (1 ∼ 20 μM) required concentration range in cancer patients. The probe for Spm and Spmd is simple, time-saving and selective, which may provide a new promising strategy for early cancer diagnosis.
Collapse
Affiliation(s)
- Shuqing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Liyuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chao Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
6
|
Yang J, Zhao Z, Jiang S, Zhang L, Zhao K, Li ZT, Ma D. pH-sensing supramolecular fluorescent probes discovered by library screening. Talanta 2023; 263:124716. [PMID: 37257239 DOI: 10.1016/j.talanta.2023.124716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
A new design concept for pH-sensing supramolecular fluorescent probes is reported. Supramolecular fluorescent pH probes based on pro-guest are designed and prepared. Pro-guests are designed to degrade under acidic condition and convert to competitive guests to displace encapsulated dyes, which leads to a significant enhancement in fluorescence intensity. A library of potential fluorescent pH probes is generated and screened to discover workable probes. These probes are capable of detecting the acidic pH in solution phase. We confirm that these supramolecular probes could detect the acidic environment in endosomal compartments in live cells.
Collapse
Affiliation(s)
- Jingyu Yang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zizhen Zhao
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Siyang Jiang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Lingyu Zhang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Kai Zhao
- School of Life Science & Institute of Advanced Studies, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | - Da Ma
- School of Pharmaceutical Engineering & Institute of Advanced Studies, Taizhou University, Jiaojiang, 318000, Zhejiang, China.
| |
Collapse
|
7
|
Shan P, Lu Y, Yu Z, Fan Y, Zhao A, Redshaw C, Tao Z, Xiao X. Encapsulationof the Haloalkane 4‐Chloromethylpyridine Hydrochloride by Cucurbit[8]uril. ChemistrySelect 2022. [DOI: 10.1002/slct.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pei‐Hui Shan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry Guizhou University Guiyang 550025 China
| | - Yun Lu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry Guizhou University Guiyang 550025 China
| | - Zhi‐chao Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry Guizhou University Guiyang 550025 China
| | - Ying Fan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry Guizhou University Guiyang 550025 China
| | - An‐ting Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry Guizhou University Guiyang 550025 China
| | - Carl Redshaw
- Department of Chemistry University of Hull Hull HU6 7RX U.K
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry Guizhou University Guiyang 550025 China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry Guizhou University Guiyang 550025 China
| |
Collapse
|
8
|
Chen H, Yan H, Cao P, He Y, Song P, Wang R. Synthesis of semicoke-based geopolymers as delivery vehicles for slow release of herbicides. NEW J CHEM 2022. [DOI: 10.1039/d2nj02431d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel carrier of semicoke-based geopolymer was prepared and applied for site-specific targeted release and recycling of herbicides.
Collapse
Affiliation(s)
- Hongxia Chen
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Haiyan Yan
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Peiyu Cao
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yufeng He
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengfei Song
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rongmin Wang
- Key Laboratory of Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|