1
|
Freckelton ML, Nedved BT, Hadfield MG. Bacterial envelope polysaccharide cues settlement and metamorphosis in the biofouling tubeworm Hydroides elegans. Commun Biol 2024; 7:883. [PMID: 39030323 PMCID: PMC11271524 DOI: 10.1038/s42003-024-06585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Metamorphosis for many marine invertebrates is triggered by external cues, commonly produced by bacteria. For larvae of Hydroides elegans, lipopolysaccharide (LPS) from the biofilm-dwelling bacterium Cellulophaga lytica induces metamorphosis. To determine whether bacterial LPS is a common metamorphosis-inducing factor for this species, we compare larval responses to LPS from 3 additional inductive Gram-negative marine biofilm bacteria with commercially available LPS from 3 bacteria not known to induce metamorphosis. LPS from all the inductive bacteria trigger metamorphosis, while LPS from non-inductive isolated marine bacteria do not. We then ask, which part of the LPS is the inductive element, the lipid (Lipid-A) or the polysaccharide (O-antigen), and find it is the latter for all four inductive bacteria. Finally, we examine the LPS subunits from two strains of the same bacterial species, one inductive and the other not, and find the LPS and O-antigen to be inductive from only the inductive bacterial strain.
Collapse
Affiliation(s)
| | - Brian T Nedved
- Kewalo Marine Laboratory, University of Hawai'i, Honolulu, HI, 96813, USA
| | - Michael G Hadfield
- Kewalo Marine Laboratory, University of Hawai'i, Honolulu, HI, 96813, USA.
| |
Collapse
|
2
|
Hoyer J, Kolar K, Athira A, van den Burgh M, Dondorp D, Liang Z, Chatzigeorgiou M. Polymodal sensory perception drives settlement and metamorphosis of Ciona larvae. Curr Biol 2024; 34:1168-1182.e7. [PMID: 38335959 DOI: 10.1016/j.cub.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
The Earth's oceans brim with an incredible diversity of microscopic lifeforms, including motile planktonic larvae, whose survival critically depends on effective dispersal in the water column and subsequent exploration of the seafloor to identify a suitable settlement site. How their nervous systems mediate sensing of diverse multimodal cues remains enigmatic. Here, we uncover that the tunicate Ciona intestinalis larvae employ ectodermal sensory cells to sense various mechanical and chemical cues. Combining whole-brain imaging and chemogenetics, we demonstrate that stimuli encoded at the periphery are sufficient to drive global brain-state changes to promote or impede both larval attachment and metamorphosis behaviors. The ability of C. intestinalis larvae to leverage polymodal sensory perception to support information coding and chemotactile behaviors may explain how marine larvae make complex decisions despite streamlined nervous systems.
Collapse
Affiliation(s)
- Jorgen Hoyer
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Kushal Kolar
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Athira Athira
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Meike van den Burgh
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Daniel Dondorp
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Zonglai Liang
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway
| | - Marios Chatzigeorgiou
- Michael Sars Centre, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen 5006, Norway.
| |
Collapse
|
3
|
Cooney C, Sommer B, Marzinelli EM, Figueira WF. The role of microbial biofilms in range shifts of marine habitat-forming organisms. Trends Microbiol 2024; 32:190-199. [PMID: 37633773 DOI: 10.1016/j.tim.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/28/2023]
Abstract
Marine species, such as corals and kelp, are responding to climate change by altering their distributions. Microbial biofilms underpin key processes that affect the establishment, maintenance, and function of these dominant habitat-formers. Climate-mediated changes to microbial biofilms can therefore strongly influence species' range shifts. Here, we review emerging research on the interactions between benthic biofilms and habitat-formers and identify two key areas of interaction where climate change can impact this dynamic: (i) via direct effects on biofilm composition, and (ii) via impacts on the complex feedback loops which exist between the biofilm microbes and habitat-forming organisms. We propose that these key interactions will be fundamental in driving the speed and extent of tropicalisation of coastal ecosystems under climate change.
Collapse
Affiliation(s)
- Christopher Cooney
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Brigitte Sommer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Will F Figueira
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
5
|
Almeda R, Rist S, Christensen AM, Antoniou E, Parinos C, Olsson M, Young CM. Crude Oil and Its Burnt Residues Induce Metamorphosis in Marine Invertebrates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19304-19315. [PMID: 37963269 DOI: 10.1021/acs.est.3c05194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Metamorphosis is a critical process in the life cycle of most marine benthic invertebrates, determining their transition from plankton to benthos. It affects dispersal and settlement and therefore decisively influences the dynamics of marine invertebrate populations. An extended period of metamorphic competence is an adaptive feature of numerous invertebrate species that increases the likelihood of finding a habitat suitable for settlement and survival. We found that crude oil and residues of burnt oil rapidly induce metamorphosis in two different marine invertebrate larvae, a previously unknown sublethal effect of oil pollution. When exposed to environmentally realistic oil concentrations, up to 84% of tested echinoderm larvae responded by undergoing metamorphosis. Similarly, up to 87% of gastropod larvae metamorphosed in response to burnt oil residues. This study demonstrates that crude oil and its burned residues can act as metamorphic inducers in marine planktonic larvae, short-circuiting adaptive metamorphic delay. Future studies on molecular pathways and oil-bacteria-metamorphosis interactions are needed to fully understand the direct or indirect mechanisms of oil-induced metamorphosis in marine invertebrates. With 90% of chronic oiling occurring in coastal areas, this previously undescribed impact of crude oil on planktonic larvae may have global implications for marine invertebrate populations and biodiversity.
Collapse
Affiliation(s)
- Rodrigo Almeda
- EOMAR-ECOAQUA, University of Las Palmas de Gran Canaria, 35017 Tafira Baja, Las Palmas, Spain
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby ,Denmark
| | - Sinja Rist
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby ,Denmark
- Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon 97420,United States
| | - Anette M Christensen
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby ,Denmark
| | - Eleftheria Antoniou
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece
- School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece
| | - Constantine Parinos
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 19013 Anavyssos, Attiki, Greece
| | - Mikael Olsson
- DTU Sustain, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Craig M Young
- Oregon Institute of Marine Biology, University of Oregon, Charleston, Oregon 97420,United States
| |
Collapse
|