1
|
Gupta A, Kulkarni S, Soman S, Saha M, Kulkarni J, Rana K, Dhas N, Ayesha Farhana S, Kumar Tiyyagura P, Pandey A, Moorkoth S, Mutalik S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int J Pharm 2024; 665:124687. [PMID: 39265846 DOI: 10.1016/j.ijpharm.2024.124687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Cancer is a significant worldwide health concern, and there is a demand for ongoing breakthroughs in treatment techniques. Microspheres are among the most studied drug delivery platforms for delivering cargo to a specified location over an extended period of time. They are biocompatible, biodegradable, and capable of surface modifications. Microspheres and their conjugates have emerged as potential cancer therapeutic options throughout the years. This review provides an in-depth look at the current advancements and applications of microspheres and their conjugates in cancer treatment. The review encompasses a wide array of conjugates, ranging from polymers such as ethyl cellulose and Eudragit to stimuli-responsive polymers, proteins, peptides, polysaccharides such as HA and chitosan, inorganic metals, aptamers, quantum dots (QDs), biomimetic conjugates, and radio conjugates designed for radioembolization. Conjugated microspheres precisely deliver chemotherapeutics to the intended target while achieving controlled drug release to prevent side effects. It offers a means of integrating several distinct therapeutic modalities (chemotherapy, photothermal therapy, photodynamic therapy, radiotherapy, immunotherapy, etc.) to provide synergistic effects during cancer treatment. This review offers insights into the prospects and evolving role of microspheres and their conjugates in the dynamic landscape of cancer therapy. This review provides a comprehensive resource for researchers and clinicians working towards advancements in cancer treatment through innovative applications in therapy and translational research.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Moumita Saha
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Komal Rana
- Manipal - Government of Karnataka Bioincubator, 3rd Floor, Advanced Research Centre, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Qassim 51452, Saudi Arabia
| | - Pavan Kumar Tiyyagura
- Department of Chemical Engineering, Manipal Institute of Technology Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Abhijeet Pandey
- Global Drug Development/ Technical Research and Development, Novartis Healthcare Private Limited, Genome Valley, Hyderabad 500081, Telangana, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Xia Y, Li X, Liu F. Targeted redox-responsive peptide for arterial chemoembolization therapy of orthotropic hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:3925-3934. [PMID: 38990300 PMCID: PMC11519146 DOI: 10.1007/s00261-024-04481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Transcatheter Arterial Chemoembolization (TACE) is the first choice for the treatment of advanced-stage hepatocellular carcinoma (HCC). However, TACE suffers from a lack of specificity and rapid drug release. Herein, a targeted redox-responsive peptide (TRRP) was synthesized and used as a carrier of doxorubicin (DOX) to enhance the efficacy of TACE through tumor cells targeting and controlled drug release. METHODS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at high glutathione (GSH) concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. RESULTS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at GSH concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. CONCLUSIONS This study demonstrated that TRRP was a promising therapeutic agent for enhancing TACE therapy for HCC treatment.
Collapse
Affiliation(s)
- Yimao Xia
- Chinese PLA Medical School, Beijing, 100853, China
| | - Xin Li
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Fengyong Liu
- Chinese PLA Medical School, Beijing, 100853, China.
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
3
|
Li Z, Huang M, Li Y, Wang Y, Ma Y, Ma L, Jiang H, Ngai T, Tang J, Guo Q. Emulsion-Based Multi-Phase Integrated Microbeads with Inner Multi-Interface Structure Enable Dual-Modal Imaging for Precision Endovascular Embolization. Adv Healthc Mater 2024; 13:e2400281. [PMID: 39081117 DOI: 10.1002/adhm.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/16/2024] [Indexed: 10/30/2024]
Abstract
Microsphere-based embolic agents have gained prominence in transarterial embolization (TAE) treatment, a critical minimally invasive therapy widely applied for a variety of diseases such as hypervascular tumors and acute bleeding. However, the development of microspheres with long-term, real-time, and repeated X-ray imaging as well as ultrasound imaging remains challenging. In this study, emulsion-based dual-modal imaging microbeads with a unique internal multi-interface structure is developed for TAE treatment. The embolic microbeads are fabricated from a solidified oil-in-water (O/W) emulsion composed of crosslinked CaAlg-based aqueous matrix and dispersed radiopaque iodinated oil (IO) droplets through a droplet-based microfluidic fabrication method. The CaAlg-IO microbeads exhibit superior X-ray imaging visibility due to the incorporation of exceptionally high iodine level up to 221 mgI mL-1, excellent ultrasound imaging capability attributed to the multi-interface structure of the O/W emulsion, great microcatheter deliverability thanks to their appropriate biomechanical properties and optimal microbead density, and extended drug release behavior owing to the biodegradation nature of the embolics. Such an embolic agent presents a promising emulsion-based platform to utilize multi-phased structures for improving endovascular embolization performance and assessment capabilities.
Collapse
Affiliation(s)
- Zhihua Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Man Huang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yingnan Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongchao Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Le Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongliang Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - To Ngai
- Department of Chemistry, Chinese University of Hong Kong, Shatin, N. T., Hong Kong, 999077, P. R. China
| | - Jianbo Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
4
|
Chen Y, Li C, Yang J, Wang M, Wang Y, Cheng S, Huang W, Yuan G, Xie M. Intravascular elimination of circulating tumor cells and cascaded embolization with multifunctional 3D tubular scaffolds. J Mater Chem B 2024; 12:9018-9029. [PMID: 39158001 DOI: 10.1039/d4tb01151a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The primary tumor ("root") and circulating tumor cells (CTCs; "seeds") are vital factors in tumor progression. However, current treatment strategies mainly focus on inhibiting the tumor while ignoring CTCs, resulting in tumor metastasis. Here, we design a multifunctional 3D scaffold with interconnected macropores, excellent photothermal ability and perfect bioaffinity as a blood vessel implantable device. When implanted upstream of the primary tumor, the scaffold intercepts CTCs fleeing back to the primary tumor and then forms "micro-thrombi" to block the supply of nutrients and oxygen to the tumor for embolization therapy. The scaffold implanted downstream of the tumor efficiently captures and photothermally kills the CTCs that escape from the tumor, thereby preventing metastasis. Experiments using rabbits demonstrated excellent biosafety of this scaffold with 86% of the CTC scavenging rate, 99% of the tumor inhibition rate and 100% of CTC killing efficiency. The multifunctional 3D scaffold synergistically inhibits the "root" and eliminates the "seeds" of the tumor, demonstrating its potential for localized cancer therapy with few side effects and high antitumor efficacy.
Collapse
Affiliation(s)
- Yijing Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Cuiwen Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Jinghui Yang
- School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yike Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Shibo Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Weihua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guohua Yuan
- School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
5
|
Shen Y, Jin D, Li T, Yang X, Ma X. Magnetically Responsive Gallium-Based Liquid Metal: Preparation, Property and Application. ACS NANO 2024. [PMID: 39073895 DOI: 10.1021/acsnano.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Magnetically responsive soft smart materials have garnered significant academic attention due to their flexibility, remote controllability, and reconfigurability. However, traditional soft materials used in the construction of these magnetically responsive systems typically exhibit low density and poor thermal and electrical conductivities. These limitations result in suboptimal performance in applications such as medical radiography, high-performance electronic devices, and thermal management. To address these challenges, magnetically responsive gallium-based liquid metals have emerged as promising alternatives. In this review, we summarize the methodologies for achieving magnetically responsive liquid metals, including the integration of magnetic agents into the liquid metal matrix and the utilization of induced Lorentz forces. We then provide a comprehensive discussion of the key physicochemical properties of these materials and the factors influencing them. Additionally, we explore the advanced and potential applications of magnetically responsive liquid metals. Finally, we discuss the current challenges in this field and present an outlook on future developments and research directions.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
7
|
Zhai M, Wu P, Liao Y, Wu L, Zhao Y. Polymer Microspheres and Their Application in Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:6556. [PMID: 38928262 PMCID: PMC11204375 DOI: 10.3390/ijms25126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer is a significant global public health issue with increasing morbidity and mortality rates. To address this challenge, novel drug carriers such as nano-materials, liposomes, hydrogels, fibers, and microspheres have been extensively researched and utilized in oncology. Among them, polymer microspheres are gaining popularity due to their ease of preparation, excellent performance, biocompatibility, and drug-release capabilities. This paper categorizes commonly used materials for polymer microsphere preparation, summarizes various preparation methods (emulsification, phase separation, spray drying, electrospray, microfluidics, and membrane emulsification), and reviews the applications of polymer microspheres in cancer diagnosis, therapy, and postoperative care. The current status and future development directions of polymer microspheres in cancer treatment are analyzed, highlighting their importance and potential for improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (M.Z.); (P.W.); (Y.L.); (L.W.)
| |
Collapse
|
8
|
Huang T, Huang S, Liu D, Zhu W, Wu Q, Chen L, Zhang X, Liu M, Wei Y. Recent advances and progress on the design, fabrication and biomedical applications of Gallium liquid metals-based functional materials. Colloids Surf B Biointerfaces 2024; 238:113888. [PMID: 38599077 DOI: 10.1016/j.colsurfb.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.
Collapse
Affiliation(s)
- Tongsheng Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shiyu Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Dong Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qinghua Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
| | - Meiying Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Liang H, Jiao J, Dou D, Li S. Cheap and efficient strategy for photocatalytic degradation of ionic liquids by La/Ce-codoped TiO 2@PAM composites. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:976-988. [PMID: 38423612 PMCID: wst_2024_026 DOI: 10.2166/wst.2024.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ionic liquids are regarded as green solvents mainly due to their non-volatile and easy regeneration and recycling properties. However, ionic liquids have negative effects on the environment and human health, especially alkyl imidazole ionic liquids are more toxic than traditional organic solutions. Studies on the toxicology, ecotoxicology, and degradation of ionic liquids are rarely found in the literature. Here, we prepared the cheap La and Ce-codoped TiO2@PAM (polyacrylamide) composite microspheres with a simple procedure for the first time to degrade three kinds of imidazole ionic liquids with high efficiency. The experimental results show that the composite La (0.25%) and Ce (0.15%)-codoped TiO2@PAM composite microspheres with calcination temperature of 450 °C had a high photocatalytic activity for 1-butyl-3-methyl imidazolium hexafluorophosphate, 1-hexyl-3-methyl imidazolium hexafluorophosphate, and 1-octyl-3-methyl imidazolium hexafluorophosphate with the concentration of 10 mg/L. The photocatalysis degradation extent of the three ionic liquids is 97.4, 91.2, and 88.5% at 90 min. This work opened a new route for the simple preparation of cheap composite microspheres in the photocatalytic degradation of ionic liquids with a high efficiency.
Collapse
Affiliation(s)
- Honglian Liang
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China E-mail:
| | - Jianli Jiao
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China
| | - Danyang Dou
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China
| | - Siyu Li
- Department of Chemistry and Material Science, Langfang Normal University, Langfang 065000, Hebei, China
| |
Collapse
|
10
|
Xu H, Lu J, Xi Y, Wang X, Liu J. Liquid metal biomaterials: translational medicines, challenges and perspectives. Natl Sci Rev 2024; 11:nwad302. [PMID: 38213519 PMCID: PMC10776368 DOI: 10.1093/nsr/nwad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/19/2023] [Indexed: 01/13/2024] Open
Abstract
Until now, significant healthcare challenges and growing urgent clinical requirements remain incompletely addressed by presently available biomedical materials. This is due to their inadequate mechanical compatibility, suboptimal physical and chemical properties, susceptibility to immune rejection, and concerns about long-term biological safety. As an alternative, liquid metal (LM) opens up a promising class of biomaterials with unique advantages like biocompatibility, flexibility, excellent electrical conductivity, and ease of functionalization. However, despite the unique advantages and successful explorations of LM in biomedical fields, widespread clinical translations and applications of LM-based medical products remain limited. This article summarizes the current status and future prospects of LM biomaterials, interprets their applications in healthcare, medical imaging, bone repair, nerve interface, and tumor therapy, etc. Opportunities to translate LM materials into medicine and obstacles encountered in practices are discussed. Following that, we outline a blueprint for LM clinics, emphasizing their potential in making new-generation artificial organs. Last, the core challenges of LM biomaterials in clinical translation, including bio-safety, material stability, and ethical concerns are also discussed. Overall, the current progress, translational medicine bottlenecks, and perspectives of LM biomaterials signify their immense potential to drive future medical breakthroughs and thus open up novel avenues for upcoming clinical practices.
Collapse
Affiliation(s)
- Hanchi Xu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing102218, China
| | - Jincheng Lu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing102218, China
| | - Yikuang Xi
- Shanghai World Foreign Language Academy, Shanghai200233, China
| | - Xuelin Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing100084,China
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
11
|
Wang D, Ye J, Bai Y, Yang F, Zhang J, Rao W, Liu J. Liquid Metal Combinatorics toward Materials Discovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303533. [PMID: 37417920 DOI: 10.1002/adma.202303533] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Liquid metals and their derivatives provide several opportunities for fundamental and practical exploration worldwide. However, the increasing number of studies and shortage of desirable materials to fulfill different needs also pose serious challenges. Herein, to address this issue, a generalized theoretical frame that is termed as "Liquid Metal Combinatorics" (LMC) is systematically presented, and summarizes promising candidate technical routes toward new generation material discovery. The major categories of LMC are defined, and eight representative methods for manufacturing advanced materials are outlined. It is illustrated that abundant targeted materials can be efficiently designed and fabricated via LMC through deep physical combinations, chemical reactions, or both among the main bodies of liquid metals, surface chemicals, precipitated ions, and other materials. This represents a large class of powerful, reliable, and modular methods for innovating general materials. The achieved combinatorial materials not only maintained the typical characteristics of liquid metals but also displayed distinct tenability. Furthermore, the fabrication strategies, wide extensibility, and pivotal applications of LMC are classified. Finally, by interpreting the developmental trends in the area, a perspective on the LMC is provided, which warrants its promising future for society.
Collapse
Affiliation(s)
- Dawei Wang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Jiao Ye
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlong Bai
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Rao
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Remlova E, Feig VR, Kang Z, Patel A, Ballinger I, Ginzburg A, Kuosmanen J, Fabian N, Ishida K, Jenkins J, Hayward A, Traverso G. Activated Metals to Generate Heat for Biomedical Applications. ACS MATERIALS LETTERS 2023; 5:2508-2517. [PMID: 37680546 PMCID: PMC10481395 DOI: 10.1021/acsmaterialslett.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Delivering heat in vivo could enhance a wide range of biomedical therapeutic and diagnostic technologies, including long-term drug delivery devices and cancer treatments. To date, providing thermal energy is highly power-intensive, rendering it oftentimes inaccessible outside of clinical settings. We developed an in vivo heating method based on the exothermic reaction between liquid-metal-activated aluminum and water. After establishing a method for consistent activation, we characterized the heat generation capabilities with thermal imaging and heat flux measurements. We then demonstrated one application of this reaction: to thermally actuate a gastric resident device made from a shape-memory alloy called Nitinol. Finally, we highlight the advantages and future directions for leveraging this novel in situ heat generation method beyond the showcased example.
Collapse
Affiliation(s)
- Eva Remlova
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Health Sciences and Technology, Eidgenössische
Technische Hochschule Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Vivian Rachel Feig
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ziliang Kang
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ashka Patel
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ian Ballinger
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anna Ginzburg
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Cell/Cellular and Molecular Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Johannes Kuosmanen
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Niora Fabian
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division
of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Keiko Ishida
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joshua Jenkins
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison Hayward
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division
of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Giovanni Traverso
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Wang D, Yu Z, Qi Y, Hu K, Zhou T, Liu J, Rao W. Liquid Metal Nanoplatform Based Autologous Cancer Vaccines. ACS NANO 2023; 17:13278-13295. [PMID: 37253081 DOI: 10.1021/acsnano.3c00941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Therapeutic cancer vaccines have been vigorously sought to bolster host adaptive immunity against metastatic cancers, but tumor heterogeneity, ineffective antigen utilization, and immunosuppressive tumor microenvironment hinder their clinical applications. Autologous antigen adsorbability and stimulus-release carrier coupling with immunoadjuvant capacity are urgent for personalized cancer vaccines. Here, we propose a perspective strategy of using a multipotent gallium-based liquid metal (LM) nanoplatform for personalized in situ cancer vaccines (ISCVs). The antigen-capturing and immunostimulatory LM nanoplatform can not only effectively destroy orthotopic tumors to generate multifarious autologous antigens upon external energy stimulation (photothermal/photodynamic effect) but also capture and transport antigens into dendritic cells (DCs) to enhance antigen utilization (adequate DCs uptake, antigen-endo/lysosomal escape) and facilitate DCs activation (mimic alum immunoadjuvant capacity), which ultimately awaken systemic antitumor immunity (expand cytotoxic T lymphocytes and modulate tumor microenvironment). With immune checkpoint blockade (anti-PD-L1) to further relieve the immunosuppressive tumor microenvironment, the positive tumoricidal immunity feedback loop was established to effectively eliminate orthotopic tumors, inhibit abscopal tumor growth, relapse, and metastasis as well as tumor-specific prevention. Collectively, this study demonstrates the potential of a multipotent LM nanoplatform for personalized ISCVs, which will open frontier exploration of LM-based immunostimulatory biomaterials and may encourage further investigation of precise individualized immunotherapy.
Collapse
Affiliation(s)
- Dawei Wang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongyang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yuxia Qi
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Kaiwen Hu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Tian Zhou
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Rao
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Carvalho SG, Dos Santos AM, Polli Silvestre AL, Tavares AG, Chorilli M, Daflon Gremião MP. Multifunctional systems based on nano-in-microparticles as strategies for drug delivery: advances, challenges, and future perspectives. Expert Opin Drug Deliv 2023; 20:1231-1249. [PMID: 37786284 DOI: 10.1080/17425247.2023.2263360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Innovative delivery systems are a promising and attractive approach for drug targeting in pharmaceutical technology. Among the various drug delivery systems studied, the association of strategies based on nanoparticles and microparticles, called nano-in-microparticles, has been gaining prominence as it allows targeting in a specific and personalized way, considering the physiological barriers faced in each disease. AREAS COVERED This review proposes to discuss nano-in-micro systems, updated progress on the main biomaterials used in the preparation of these systems, preparation techniques, physiological considerations, applications and challenges, and possible strategies for drug administration. Finally, we bring future perspectives for advances in clinical and field translation of multifunctional systems based on nano-in-microparticles. EXPERT OPINION This article brings a new approach to exploring the use of multifunctional systems based on nano-in-microparticles for different applications, in addition, it also emphasizes the use of biomaterials in these systems and their limitations. There is currently no study in the literature that explores this approach, making a review article necessary to address this association of strategies for application in pharmaceutical technology.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Alberto Gomes Tavares
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
15
|
Lee W, Lee CE, Kim HJ, Kim K. Current Progress in Gallium-based Liquid Metals for Combinatory Phototherapeutic Anticancer Applications. Colloids Surf B Biointerfaces 2023; 226:113294. [PMID: 37043951 DOI: 10.1016/j.colsurfb.2023.113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
A variety of therapeutic approaches using liquid metal (LM) have been intensively investigated, due to its unique physico-chemical properties that include high surface tension, fluidity, shape deformability, thermal conductivity, and electrical conductivity. Among a series of LMs, the relatively lower toxicity and minimal volatility of gallium (Ga)-based LMs (GaLMs) enables their usage in a series of potential biomedical applications, especially implantable platforms, to treat multiple diseases. In addition, the highly efficient conversion of light energy into thermal or chemical energy via GaLMs has led to recent developments in photothermal and photodynamic applications for anticancer treatments. As attractive photothermal agents or photosensitizers, a systematic interpretation of the structural characteristics and photo-responsive behaviors of GaLMs is necessary to develop effective anticancer engineering applications. Therefore, the aim of this review is to provide a comprehensive summary of currently suggested GaLM-mediated photo-therapeutic cancer treatments. In particular, the review summarizes (1) surface coating techniques to form stable and multifunctional GaLM particulates, (2) currently investigated GaLM-mediated photothermal and photodynamic anticancer therapies, (3) synergistic efficacies with the aid of additional interventions, and (4) 3D composite gels embedded with GaLMs particles, to convey the potential technological advances of LM in this field.
Collapse
|
16
|
Feig VR, Remlova E, Muller B, Kuosmanen JLP, Lal N, Ginzburg A, Nan K, Patel A, Jebran AM, Bantwal MP, Fabian N, Ishida K, Jenkins J, Rosenboom JG, Park S, Madani W, Hayward A, Traverso G. Actively Triggerable Metals via Liquid Metal Embrittlement for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208227. [PMID: 36321332 DOI: 10.1002/adma.202208227] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Actively triggerable materials, which break down upon introduction of an exogenous stimulus, enable precise control over the lifetime of biomedical technologies, as well as adaptation to unforeseen circumstances, such as changes to an established treatment plan. Yet, most actively triggerable materials are low-strength polymers and hydrogels with limited long-term durability. By contrast, metals possess advantageous functional properties, including high mechanical strength and conductivity, that are desirable across several applications within biomedicine. To realize actively triggerable metals, a mechanism called liquid metal embrittlement is leveraged, in which certain liquid metals penetrate the grain boundaries of certain solid metals and cause them to dramatically weaken or disintegrate. In this work, it is demonstrated that eutectic gallium indium (EGaIn), a biocompatible alloy of gallium, can be formulated to reproducibly trigger the breakdown of aluminum within different physiologically relevant environments. The breakdown behavior of aluminum after triggering can further be readily controlled by manipulating its grain structure. Finally, three possible use cases of biomedical devices constructed from actively triggerable metals are demonstrated.
Collapse
Affiliation(s)
- Vivian R Feig
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eva Remlova
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - Benjamin Muller
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Johannes L P Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nikhil Lal
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anna Ginzburg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cell/Cellular and Molecular Biology, Northeastern University, Boston, MA, 02115, USA
| | - Kewang Nan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ashka Patel
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Ahmad Mujtaba Jebran
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Meghana Prabhu Bantwal
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biotechnology, Northeastern University, Boston, MA, 02115, USA
| | - Niora Fabian
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Keiko Ishida
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Joshua Jenkins
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jan-Georg Rosenboom
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sanghyun Park
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wiam Madani
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alison Hayward
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Yuan G, Liu Z, Wang W, Liu M, Xu Y, Hu W, Fan Y, Zhang X, Liu Y, Si G. Multifunctional nanoplatforms application in the transcatheter chemoembolization against hepatocellular carcinoma. J Nanobiotechnology 2023; 21:68. [PMID: 36849981 PMCID: PMC9969656 DOI: 10.1186/s12951-023-01820-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has the sixth-highest new incidence and fourth-highest mortality worldwide. Transarterial chemoembolization (TACE) is one of the primary treatment strategies for unresectable HCC. However, the therapeutic effect is still unsatisfactory due to the insufficient distribution of antineoplastic drugs in tumor tissues and the worsened post-embolization tumor microenvironment (TME, e.g., hypoxia and reduced pH). Recently, using nanomaterials as a drug delivery platform for TACE therapy of HCC has been a research hotspot. With the development of nanotechnology, multifunctional nanoplatforms have been developed to embolize the tumor vasculature, creating conditions for improving the distribution and bioavailability of drugs in tumor tissues. Currently, the researchers are focusing on functionalizing nanomaterials to achieve high drug loading efficacy, thorough vascular embolization, tumor targeting, controlled sustained release of drugs, and real-time imaging in the TACE process to facilitate precise embolization and enable therapeutic procedures follow-up imaging of tumor lesions. Herein, we summarized the recent advances and applications of functionalized nanomaterials based on TACE against HCC, believing that developing these functionalized nanoplatforms may be a promising approach for improving the TACE therapeutic effect of HCC.
Collapse
Affiliation(s)
- Gang Yuan
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Zhiyin Liu
- grid.488387.8Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Weiming Wang
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 China
| | - Mengnan Liu
- grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China ,grid.488387.8National Traditional Chinese Medicine Clinical Research Base and Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yanneng Xu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Wei Hu
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China ,grid.259384.10000 0000 8945 4455State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR China
| | - Yao Fan
- grid.410578.f0000 0001 1114 4286Department of Anus and Intestine Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Xun Zhang
- grid.410578.f0000 0001 1114 4286Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000 China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Guangyan Si
- Department of Intervention Radiology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
18
|
Wu S, Fan K, Yang Q, Chen Z, Hou Y, Zou Y, Cai W, Kang L. Smart nanoparticles and microbeads for interventional embolization therapy of liver cancer: state of the art. J Nanobiotechnology 2023; 21:42. [PMID: 36747202 PMCID: PMC9901004 DOI: 10.1186/s12951-023-01804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The process of transcatheter arterial chemoembolization is characterized by the ability to accurately deliver chemotherapy drugs with minimal systemic side effects and has become the standard treatment for unresectable intermediate hepatocellular carcinoma (HCC). However, this treatment option still has much room for improvement, one of which may be the introduction of nanomaterials, which exhibit unique functions and can be applied to in vivo tumor imaging and therapy. Several biodegradable and multifunctional nanomaterials and nanobeads have recently been developed and applied in the locoregional treatment of hepatocellular cancer. This review explores recent developments and findings in relation to micro-nano medicines in transarterial therapy for HCC, emerging strategies to improve the efficacy of delivering nano-based medicines, and expounding prospects for clinical applications of nanomaterials.
Collapse
Affiliation(s)
- Sitong Wu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Kevin Fan
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
19
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
20
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
21
|
Duan M, Zhu X, Fan L, He Y, Yang C, Guo R, Chen S, Sun X, Liu J. Phase-Transitional Bismuth-Based Metals enable Rapid Embolotherapy, Hyperthermia, and Biomedical Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205002. [PMID: 36018724 DOI: 10.1002/adma.202205002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Embolization has been an important minimally invasive therapy for occlusion of malfunctioned vasculature and tumor treatment via target delivering embolic agents. The limitation of conventional embolic agents, such as fabrication process, precipitation time, invisibility, and lack of integrated functions often leads to insufficient embolization efficacy. To overcome these drawbacks, a multifunctional bismuth (Bi)-based liquid embolic agent for simultaneous realization of embolotherapy, thermotherapy, as well as high-contrast biomedical imaging is proposed. Benefitting from the suitable melting point, flexible nature, metallic merit, and easygoing operation via injection, the versatile embolic agent can achieve rapid liquid-solid phase transition, magnetic hyperthermia, and multimodal imaging capability. The Bi-based materials are demonstrated with excellent arteriovenous embolization efficiency and favorable biocompatibility according to in vivo investigations. Introduction of the liquid embolic agent to tumor arteries achieves evident tumor regression and rather clear imaging under computed tomography (CT), magnetic resonance imaging (MRI), and thermographs for consistently tracking the implants over the biological body. Further, the combined therapy coupled with thermotherapy exhibits improved therapeutic efficiency with formation of necrosis and total tumor eradiation at day 15 after the treatment. The present innovative embolic agent and the surgical principle provide a promising modality for embolization and potential theranostic platform of tumors.
Collapse
Affiliation(s)
- Minghui Duan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Linlin Fan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan He
- School of Physics, Peking University, Beijing, 100871, China
| | - Chen Yang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Rui Guo
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xuyang Sun
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
22
|
Zou J, He J, Wang X, Wang Y, Wu C, Shi M, Jiang H, Wu Z, Liu J, Zhang W. Glycoprotein Ib-regulated micro platelet ghost for biosafe distribution and photothermal oncotherapy. J Control Release 2022; 351:341-360. [PMID: 36152806 DOI: 10.1016/j.jconrel.2022.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/20/2022] [Accepted: 09/15/2022] [Indexed: 10/31/2022]
Abstract
Despite the tremendous theranostics potential of nano-scale drug delivery system (NDDS) in oncology field, their tumor-targeting efficiency and safety remain major challenges due to their proneness of off-target accumulation through widespread vascular endothelial gaps (up to 1 μm). To address this problem, in this research, micro-sized cellular platelet "ghosts" (PGs, 1.32 μm, platelet without inner granules and coagulation) were employed as carriers to ship hollow gold nanoparticles (HGNs, 58.7 nm), forming a hierarchical biosafe system (PG@HGNs) to reduce normal tissue interception and enhance tumor targeting delivery of HGNs for improved photothermal therapy. PGs were prepared by an optimized "swelling-extrusion-elution" method, HGNs were loaded in PGs (PG@HGNs) through a "hypotonic dialysis" method and the safety and biodistribution of the system was evaluated in vitro and in vivo. In in vitro condition that stimulated the tumoral vessel acidic microenvironment (pH = 6.5), PG@HGNs were demonstrated with enhanced membrane fluidity through down-regulation of the glycoprotein Ib expressed on the PGs. This change induced a burst release of nano-sized HGNs which were capable to traverse vascular endothelium layer on a tumor-endothelial cell transwell model, whilst the micro-sized PG carriers were intercepted. In comparison to nano-sized platelet membrane-coated carriers (PM@HGNs), PG@HGNs showed enhanced internalization and cytotoxicity to 4T1 cells. In animal models, PG@HGNs remarkably prolonged circulation most likely due to the presence of "self-recognition" receptor-CD47 of PGs, and effectively reduced normal tissue interception via the micro-scale size effect. These both contributed to the significantly improved tumor targeting efficiency of HGNs. PG@HGNs generated the greater antitumor photothermal efficacy alongside safety in the animals compared to PM@HGNs. Collectively, this study demonstrated the potential of the micro-scale PGs equipped with adjusted membrane GP Ib as biosafe vehicles for HGNs or possibly other nanodrugs. THE STATEMENT OF SIGNIFICANCE: Despite the tremendous theranostics potentials, the safety and tumor-targeting efficiency of nano-scale drug delivery systems (NDDS) are compromised by their undesirable accumulation in normal tissues with widespread vascular endothelial gaps, such as many tumor-targeted NDDSs still accumulated much in liver and/or spleen. Herein, we explored a micro-nano biomimetic cascade delivery system to address the above drawbacks. By forming a hierarchical biosafe system, micro-sized platelet "ghost" (PGs, 1.32 μm) was employed as tumor-targeted delivery carrier to transport hollow gold nanoparticles (HGNs, 58.7 nm). It was demonstrated that this micro-size system could maintain platelet membrane structure thus prolong in vivo circulation, while avoiding extravasation into normal tissues. PG@HGNs could sensitively respond to the acidic microenvironment near tumor vessel via down-regulation of glycoprotein Ib and rapidly release "nano-bullets"-HGNs to further penetrate into the tumor tissues through EPR effect, thus enhancing photothermal efficacy generated by HGNs under NIR irradiation. Collectively, the micro-scaled PGs could be biosafe vehicles for improved tumor-targeted delivery of HGNs or possibly other nanodrugs.
Collapse
Affiliation(s)
- Jiahui Zou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Xiaobo Wang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Yajie Wang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Chenchen Wu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Mengya Shi
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Hulin Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China
| | - Zimei Wu
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu 210009, PR China.
| |
Collapse
|
23
|
Wei C, Wu C, Jin X, Yin P, Yu X, Wang C, Zhang W. CT/MR detectable magnetic microspheres for self-regulating temperature hyperthermia and transcatheter arterial chemoembolization. Acta Biomater 2022; 153:453-464. [PMID: 36167241 DOI: 10.1016/j.actbio.2022.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
The embolic microspheres containing magnetic nanoparticles and anti-tumor drugs have been proposed for transcatheter arterial chemoembolization (TACE). However, this technique still suffers the poor control of hyperthermia temperature and drug release behavior. Herein, the magnetic microspheres based on low Curie temperature superparamagnetic iron oxide nanoparticles are developed by emulsification cross-linking of gelatin, genipin, and sodium alginate. The magnetic microspheres can self-regulate the hyperthermia temperature at around 50°C, un-necessitating any temperature control facilities. The magnetic microspheres can load doxorubicin hydrochloride and the loaded drug can be released in a controllable way by using an alternating magnetic field. Cytocompatibility and hemolysis evaluations confirm the non-cytotoxicity and negligible hemolysis of magnetic microspheres. The embolization model on rabbit auricular artery demonstrates that the magnetic microspheres can occlude the targeted blood vessel and are visualized under CT/MR imaging. All these findings suggest that the prepared magnetic microspheres could be used as the embolic agent in TACE. STATEMENT OF SIGNIFICANCE: The existing magnetic embolic microspheres suffer the poor control of hyperthermia temperature and drug release behavior in TACE. In this work, we developed the magnetic embolic microspheres based on superparamagnetic iron oxide nanoparticles with a low Curie temperature. Upon the application of alternating magnetic field, the embolic microspheres can self-regulate the hyperthermia temperature at around 50°C and the drug loaded in the microspheres can be released in a somewhat controllable manner. The embolic microspheres are also detectable to both CT and MR. These characteristics enable the developed microspheres to simultaneously realize self-regulating temperature hyperthermia, on-demand drug release, embolism, and CT/MR imaging.
Collapse
Affiliation(s)
- Chengxiong Wei
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Chengwei Wu
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xin Jin
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Peinan Yin
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xiaogang Yu
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Chao Wang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
24
|
Wang L, Lai R, Zhang L, Zeng M, Fu L. Emerging Liquid Metal Biomaterials: From Design to Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201956. [PMID: 35545821 DOI: 10.1002/adma.202201956] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Liquid metals (LMs) as emerging biomaterials possess unique advantages including their favorable biosafety, high fluidity, and excellent electrical and thermal conductivities, thus providing a unique platform for a wide range of biomedical applications ranging from drug delivery, tumor therapy, and bioimaging to biosensors. The structural design and functionalization of LMs endow them with enhanced functions such as enhanced targeting ability and stimuli responsiveness, enabling them to achieve better and even multifunctional synergistic therapeutic effects. Herein, the advantages of LMs in biomedicine are presented. The design of LM-based biomaterials with different scales ranging from micro-/nanoscale to macroscale and various components is explored in-depth to promote the understanding of structure-property relationships, guiding their performance optimization and applications. Furthermore, the related advanced progress in the development of LM-based biomaterials in biomedicine is summarized. Current challenges and prospects of LMs in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Runze Lai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichen Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Renmin Hospital of Wuhan University, Wuhan, 410013, China
| |
Collapse
|
25
|
Qi Y, Yu Z, Hu K, Wang D, Zhou T, Rao W. Rigid metal/liquid metal nanoparticles: Synthesis and application for locally ablative therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102535. [PMID: 35181527 DOI: 10.1016/j.nano.2022.102535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Locally ablative therapy, as the main therapy for advanced tumors, has fallen into a bottleneck in recent years. The breakthrough of metal nanoparticles provides a novel approach for ablative therapy. Previous studies have mostly focused on the combined field of rigid metal nanoparticles and ablation. However, with the maturity of the preparation process of liquid metal nanoparticles, liquid metal nanoparticles not only have metallic properties but also have fluid properties, showing the potential to be combined with ablation. At present, there is no review on the combination of liquid metal nanoparticles and ablation. In this article, we first review the preparation, characterization and application characteristics of rigid metal and liquid metal nanoparticles in ablation applications, and then summarize the advantages, disadvantages and possible future development trends of rigid and liquid metal nanoparticles.
Collapse
Affiliation(s)
- Yuxia Qi
- Beijing University of Chinese Medicine, Beijing, China.
| | - Zhongyang Yu
- Beijing University of Chinese Medicine, Beijing, China.
| | - Kaiwen Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing,, China.
| | - Dawei Wang
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, China.
| | - Tian Zhou
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing,, China.
| | - Wei Rao
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, China; Beijing Key Laboratory of Cryo-Biomedical Engineering, Beijing, China.
| |
Collapse
|
26
|
Hafiz S, Xavierselvan M, Gokalp S, Labadini D, Barros S, Duong J, Foster M, Mallidi S. Eutectic Gallium-Indium Nanoparticles for Photodynamic Therapy of Pancreatic Cancer. ACS APPLIED NANO MATERIALS 2022; 5:6125-6139. [PMID: 35655927 PMCID: PMC9150699 DOI: 10.1021/acsanm.1c04353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 05/04/2023]
Abstract
Developing a cancer theranostic nanoplatform with diagnosis and treatment capabilities to effectively treat tumors and reduce side effects is of great significance. Herein, we present a drug delivery strategy for photosensitizers based on a new liquid metal nanoplatform that leverages the tumor microenvironment to achieve photodynamic therapeutic effects in pancreatic cancer. Eutectic gallium indium (EGaIn) nanoparticles were successfully conjugated with a water-soluble cancer targeting ligand, hyaluronic acid, and a photosensitizer, benzoporphyrin derivative, creating EGaIn nanoparticles (EGaPs) via a simple green sonication method. The prepared sphere-shaped EGaPs, with a core-shell structure, presented high biocompatibility and stability. EGaPs had greater cellular uptake, manifested targeting competence, and generated significantly higher intracellular ROS. Further, near-infrared light activation of EGaPs demonstrated their potential to effectively eliminate cancer cells due to their single oxygen generation capability. Finally, from in vivo studies, EGaPs caused tumor regression and resulted in 2.3-fold higher necrosis than the control, therefore making a good vehicle for photodynamic therapy. The overall results highlight that EGaPs provide a new way to assemble liquid metal nanomaterials with different ligands for enhanced cancer therapy.
Collapse
Affiliation(s)
- Sabrina
S. Hafiz
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Marvin Xavierselvan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Sumeyra Gokalp
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Daniela Labadini
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Sebastian Barros
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Jeanne Duong
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle Foster
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Srivalleesha Mallidi
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
27
|
Liu L, Zhuang J, Tan J, Liu T, Fan W, Zhang Y, Li J. Doxorubicin-Loaded UiO-66/Bi 2S 3 Nanocomposite-Enhanced Synergistic Transarterial Chemoembolization and Photothermal Therapy against Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7579-7591. [PMID: 35129950 DOI: 10.1021/acsami.1c19121] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcatheter arterial chemoembolization (TACE) is the first choice for patients with intermediate hepatocellular carcinoma (HCC), but clinical applications still face some problems, such as the difficulties in clearing all cancer cells and lack of targeting, which would damage normal liver cells. Recently, photothermal therapy (PTT) and nanodelivery systems have been used to improve the efficacy of TACE. However, most of these strategies achieve only a single function, and the synthesis process is complicated. Here, a simple one-step solvothermal method was used to develop multifunctional nanoparticles (UiO-66/Bi2S3@DOX), which can simultaneously achieve photothermal effects and low pH-triggered DOX release. UiO-66/Bi2S3 exhibited a pH-responsive release behavior and an excellent photothermal effect in a series of in vitro and in vivo studies. Biocompatibility was confirmed by cytotoxicity and hemocompatibility evaluations. The rat N1S1 liver tumor model was established to investigate the therapeutic effect and biosafety of the nanoplatforms using TACE. The results revealed that the combination of TACE and PTT resulted in remarkable tumor growth inhibition, and the histopathological assay further revealed extensive necrosis, downregulated angiogenesis, increased apoptosis, and proliferation in the tumor response. These results demonstrated that this nanosystem platform was a promising therapeutic agent for enhancing TACE therapy for HCC treatment.
Collapse
Affiliation(s)
- Lingwei Liu
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jialang Zhuang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jizhou Tan
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ting Liu
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wenzhe Fan
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jiaping Li
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
28
|
Allioux FM, Ghasemian MB, Xie W, O'Mullane AP, Daeneke T, Dickey MD, Kalantar-Zadeh K. Applications of liquid metals in nanotechnology. NANOSCALE HORIZONS 2022; 7:141-167. [PMID: 34982812 DOI: 10.1039/d1nh00594d] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-transition liquid metals (LMs) offer new opportunities for accessing exciting dynamics for nanomaterials. As entities with free electrons and ions as well as fluidity, LM-based nanomaterials are fundamentally different from their solid counterparts. The low melting points of most post-transition metals (less than 330 °C) allow for the formation of nanodroplets from bulk metal melts under mild mechanical and chemical conditions. At the nanoscale, these liquid state nanodroplets simultaneously offer high electrical and thermal conductivities, tunable reactivities and useful physicochemical properties. They also offer specific alloying and dealloying conditions for the formation of multi-elemental liquid based nanoalloys or the synthesis of engineered solid nanomaterials. To date, while only a few nanosized LM materials have been investigated, extraordinary properties have been observed for such systems. Multi-elemental nanoalloys have shown controllable homogeneous or heterogeneous core and surface compositions with interfacial ordering at the nanoscale. The interactions and synergies of nanosized LMs with polymeric, inorganic and bio-materials have also resulted in new compounds. This review highlights recent progress and future directions for the synthesis and applications of post-transition LMs and their alloys. The review presents the unique properties of these LM nanodroplets for developing functional materials for electronics, sensors, catalysts, energy systems, and nanomedicine and biomedical applications, as well as other functional systems engineered at the nanoscale.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
29
|
Xie W, Allioux FM, Namivandi-Zangeneh R, Ghasemian MB, Han J, Rahim MA, Tang J, Yang J, Mousavi M, Mayyas M, Cao Z, Centurion F, Christoe MJ, Zhang C, Wang Y, Merhebi S, Baharfar M, Ng G, Esrafilzadeh D, Boyer C, Kalantar-Zadeh K. Polydopamine Shell as a Ga 3+ Reservoir for Triggering Gallium-Indium Phase Separation in Eutectic Gallium-Indium Nanoalloys. ACS NANO 2021; 15:16839-16850. [PMID: 34613693 DOI: 10.1021/acsnano.1c07278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low melting point eutectic systems, such as the eutectic gallium-indium (EGaIn) alloy, offer great potential in the domain of nanometallurgy; however, many of their interfacial behaviors remain to be explored. Here, a compositional change of EGaIn nanoalloys triggered by polydopamine (PDA) coating is demonstrated. Incorporating PDA on the surface of EGaIn nanoalloys renders core-shell nanostructures that accompany Ga-In phase separation within the nanoalloys. The PDA shell keeps depleting the Ga3+ from the EGaIn nanoalloys when the synthesis proceeds, leading to a Ga3+-coordinated PDA coating and a smaller nanoalloy. During this process, the eutectic nanoalloys turn into non-eutectic systems that ultimately result in the solidification of In when Ga is fully depleted. The reaction of Ga3+-coordinated PDA-coated nanoalloys with nitrogen dioxide gas is presented as an example for demonstrating the functionality of such hybrid composites. The concept of phase-separating systems, with polymeric reservoirs, may lead to tailored materials and can be explored on a variety of post-transition metals.
Collapse
Affiliation(s)
- Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jialuo Han
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Zhenbang Cao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Michael J Christoe
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Yifang Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Salma Merhebi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Gervase Ng
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|