Wang T, Sun B, Tang K, Shen W, Chen C, Sun D. Sustainable bacterial cellulose derived composites for high-efficiency hydrogen evolution reaction.
Int J Biol Macromol 2023;
242:125173. [PMID:
37268083 DOI:
10.1016/j.ijbiomac.2023.125173]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Incorporating heteroatoms into carbon structure has been demonstrated to be efficient for hydrogen evolution reaction (HER). However, the preparation complexity and poor durability are insufficient for the future hydrogen economy. In this work, the preparation of ZIF-67/BC precursor with BC as the template was done for the in-situ growth of MOFs (ZIF-67) crystals, followed by the carbonization and phosphating of ZIF-67/BC to prepare the CoP-NC/CBC N-doped composite carbon material with CoP as the primary active material. The results show that as an HER catalyst, CoP-NC/CBC can provide a current density of 10 mA cm-2 at an overpotential of 182 mV in the acidic electrolyte of 0.5 M H2SO4 or the same current density at an overpotential of 151 mV in the alkaline electrolyte of 1.0 M KOH. The work validates a design idea for advanced non-precious metal-based HER catalysts with high activity and stability.
Collapse