1
|
Minervini G, Panniello A, Dibenedetto CN, Madonia A, Fanizza E, Curri ML, Striccoli M. Exploring Carbon Dots: Green Nanomaterials for Unconventional Lasing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403653. [PMID: 39165080 DOI: 10.1002/smll.202403653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Indexed: 08/22/2024]
Abstract
In recent years, the progress toward lighting miniaturization is focused on luminescent nanomaterials. Among them, fluorescent carbon dots (CDs) are receiving increasing attention thanks to their astonishing optical properties complemented by their intrinsic biocompatibility and low toxicity. The CDs can be easily dispersed in water, organic solvents or incorporated in polymeric matrices, preserving their emission properties. However, the relationship between their structural and optical properties is still not fully elucidated, motivating a consistent research effort for the comprehension of their features. Nevertheless, CDs demonstrate to be efficient gain materials for lasing, thanks to their high quantum yield (QY), emission tunability in the visible and near infrared (NIR) range, short lifetimes, and high absorption cross section, even if the synthetic reproducibility, the low reaction yield and the spectral width of the emission may limit their effective exploitation. This review summarizes the latest advancements in the investigation of the characteristic properties of CDs that make laser action possible, illustrating optical geometries for lasing and random lasing, both in solution and solid state, and the few currently demonstrated breakthroughs. While the journey toward their effective application is still long, the potential of CD-based laser sources is promising in various technological fields and futuristic perspectives will be discussed.
Collapse
Affiliation(s)
- Gianluca Minervini
- Institute for Physical and Chemical Processes (IPCF), CNR, via Orabona 4, Bari, 70125, Italy
| | - Annamaria Panniello
- Institute for Physical and Chemical Processes (IPCF), CNR, via Orabona 4, Bari, 70125, Italy
| | | | - Antonino Madonia
- Department of Physics and Chemistry "E. Segré", University of Palermo, Via Archirafi 36, Palermo, 90123, Italy
| | - Elisabetta Fanizza
- Institute for Physical and Chemical Processes (IPCF), CNR, via Orabona 4, Bari, 70125, Italy
- Chemistry Department, University of Bari, via Orabona 4, Bari, 70125, Italy
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Bari Research Unit, Via Orabona 4, Bari, 70125, Italy
| | - Maria Lucia Curri
- Institute for Physical and Chemical Processes (IPCF), CNR, via Orabona 4, Bari, 70125, Italy
- Chemistry Department, University of Bari, via Orabona 4, Bari, 70125, Italy
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Bari Research Unit, Via Orabona 4, Bari, 70125, Italy
| | - Marinella Striccoli
- Institute for Physical and Chemical Processes (IPCF), CNR, via Orabona 4, Bari, 70125, Italy
- National Interuniversity Consortium of Materials Science and Technology, INSTM, Bari Research Unit, Via Orabona 4, Bari, 70125, Italy
| |
Collapse
|
2
|
Zhou Y, Duan HL, Tan KJ, Dong L. One-step solvothermal synthesis of full-color fluorescent carbon dots for information encryption and anti-counterfeiting applications. NANOSCALE 2024; 16:11642-11650. [PMID: 38847559 DOI: 10.1039/d4nr01111b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Multicolor fluorescent carbon dots (CDs) have received extensive attention due to their excellent fluorescence tunable performance. In this study, multicolor CDs with color tunable and high fluorescence quantum yields (QYs) were successfully prepared under the same conditions by a one-step solvothermal method using 2-aminoterephthalic acid (ATA) and Nile Blue A (NBA) as reaction reagents, achieving a wide color field coverage. Detailed studies on the relevant mechanisms have been carried out for blue, green and red CDs, indicating that the regulating mechanism of multicolor luminescence is determined by the size of the sp2 conjugated domains, which is due to the increase of particle size that causes an increase in the size of the sp2 conjugated domains, resulting in the narrowing of the band gap and the red-shift of the emission wavelength. It was found that the CDs have the advantages of simple preparation, high photostability and high quantum yield. They were used as fluorescent ink and mixed with polyvinyl alcohol (PVA) to form CD/PVA composites, which were successfully applied in the field of information encryption and anti-counterfeiting. This work provides a new strategy for the synthesis of panchromatic tunable fluorescent CDs and their application in the field of information encryption and anti-counterfeiting.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hai-Lin Duan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ke-Jun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Lin Dong
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
3
|
Yin Y, Wu X, Huang C, Dong Y, Liu J, Tan Y, Liang H, Yang S. Microwave synthesized novel biomass carbon dots applied in the fluorescent detection of crystal violet. LUMINESCENCE 2024; 39:e4778. [PMID: 38772865 DOI: 10.1002/bio.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
To establish a new method for detecting crystal violet (CV), a harmful dye, herein, a genre of novel biomass carbon dots (CDs) was synthesized via a microwave method and employed as a fluorescent probe, in which water spinach and polyethylene glycol (PEG) performed as raw materials. Based on the inner filter effect (IFE) between the luminescent CDs and CV, the blue emission of this probe at 430 nm could be quenched by CV. Hence, a new strategy was proposed to selectively determine CV in aquaculture ambient. Moreover, under the optimal experiment conditions, this method showed a good linearity between the concentration of CV (c) and fluorescence quenching rate (ΔF/F0) in the concentration range of 4-200 μmol/L with the corresponding correlation coefficient (r) and the detection limit of 0.997 and 710 nmol/L, respectively. With advantages of environmental protectivity, sensitivity, affordability, and user-friendliness, the facilely fabricated CDs could be successfully applied in detecting CV in aquaculture samples, providing a technical foundation for monitoring the pollution of CV and ensuring the quality and safety of aquatic products.
Collapse
Affiliation(s)
- Yu Yin
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiwen Wu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Chongyang Huang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yaolin Dong
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinquan Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan Tan
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Hao Liang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Shengyuan Yang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
5
|
Dey A, Pramanik A, Mondal K, Biswas S, Chatterjee U, Messina F, Kumbhakar P. Replica symmetry breaking in a colloidal plasmonic random laser with gold-coated triangular silver nanostructures. OPTICS LETTERS 2023; 48:4141-4144. [PMID: 37527138 DOI: 10.1364/ol.493987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Plasmonic random lasers have drawn significant attention recently due to their versatility, low threshold, and the possibility of achieving tunable and coherent/incoherent outputs. However, in this Letter, the phenomenon of replica symmetry breaking is reported in intensity fluctuations of a rarely used colloidal plasmonic random laser (RL) illumination. Triangular nanosilver scatter particles produced incoherent RL action when used in a dimethylformamide (DMF) environment in a Rhodamine-6G gain medium. The use of gold-coated triangular nanosilver as the scatterer in place of triangular nanosilver offered a dual contribution of scattering and lower photo-reabsorption, which caused a reduction in the lasing threshold energy of 39% compared to that obtained with the latter. Further, due to its long-term photostability and chemical properties, a phase transition from the photonic paramagnetic to the glassy phase is observed experimentally in the RL system used. Interestingly, the transition occurs at approximately the lasing threshold value, which is a consequence of stronger correlation of modal behaviors at high input pump energies.
Collapse
|
6
|
Zhang Y, Wang L, Hu Y, Sui L, Cheng L, Lu S. Centralized Excited States and Fast Radiation Transitions Reduce Laser Threshold in Carbon Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207983. [PMID: 36843250 DOI: 10.1002/smll.202207983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Indexed: 06/15/2023]
Abstract
As a new type of solution-processed nano-laser material, carbon dots (CDs) have shown considerable potential in optical communication, laser displays, micro/nano processing, and biomedicine. Reducing the laser threshold of the gain material is of considerable significance for further development of CDs' applications in the field of micro/nano lasers. A series of blue-emissive CDs (B-CDs) are synthesized by changing the molar ratios of the precursors (citric acid (CA): L-Cysteine (L-Cys)). B-CDs have a structure of carbon nanoparticles with their surface being modified with 5-oxo-3,5-dihydro-2Hthiazolo [3,2-a]pyridine-7-carboxylic acid (TPCA). The laser can only be generated when the molar ratio of the precursors is between 1:1 and 2:1. With an increase in this ratio, the laser threshold decreases from 341.6 to 165.5 mJ cm-2 . The decrease in the laser threshold is attributed to the increase in the radiation transition rate and centralized sp3 -related excited state levels, which are favorable for light amplification and population inversion. These results will be instructional for the reasonably design of CDs-based laser materials and prompt their potential use in practical photonics.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Lu Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Yongsheng Hu
- School of Physics and Microelectronics, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 zhongshan road, Dalian, 116023, P. R. China
| | - Liwen Cheng
- College of Physical Science and Technology, Yangzhou University, No. 88 South Daxue Road, Yangzhou, 225002, P. R. China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Anwar A, Mur M, Humar M. Microcavity- and Microlaser-Based Optical Barcoding: A Review of Encoding Techniques and Applications. ACS PHOTONICS 2023; 10:1202-1224. [PMID: 37215324 PMCID: PMC10197175 DOI: 10.1021/acsphotonics.2c01611] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 05/24/2023]
Abstract
Optical microbarcodes have recently received a great deal of interest because of their suitability for a wide range of applications, such as multiplexed assays, cell tagging and tracking, anticounterfeiting, and product labeling. Spectral barcodes are especially promising because they are robust and have a simple readout. In addition, microcavity- and microlaser-based barcodes have very narrow spectra and therefore have the potential to generate millions of unique barcodes. This review begins with a discussion of the different types of barcodes and then focuses specifically on microcavity-based barcodes. While almost any kind of optical microcavity can be used for barcoding, currently whispering-gallery microcavities (in the form of spheres and disks), nanowire lasers, Fabry-Pérot lasers, random lasers, and distributed feedback lasers are the most frequently employed for this purpose. In microcavity-based barcodes, the information is encoded in various ways in the properties of the emitted light, most frequently in the spectrum. The barcode is dependent on the properties of the microcavity, such as the size, shape, and the gain materials. Various applications of these barcodes, including cell tracking, anticounterfeiting, and product labeling are described. Finally, the future prospects for microcavity- and microlaser-based barcodes are discussed.
Collapse
Affiliation(s)
- Abdur
Rehman Anwar
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Maruša Mur
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Matjaž Humar
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- CENN
Nanocenter, Jamova 39, SI-1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska
19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Wang L, Yang M, Zhang S, Niu C, Lv Y. Perovskite Random Lasers, Process and Prospects. MICROMACHINES 2022; 13:2040. [PMID: 36557338 PMCID: PMC9783485 DOI: 10.3390/mi13122040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Random lasers (RLs) are a kind of coherent light source with optical feedback based on disorder-induced multiple scattering effects instead of a specific cavity. The unique feedback mechanism makes RLs different from conventional lasers. They have the advantages of small volume, flexible shape, omnidirectional emission, etc., and have broad application prospects in the fields of laser illumination, speckle-free imaging, display, and sensing. Colloidal metal-halide perovskite nanomaterials are a hot research field in light sources. They have been considered as desired gain media owing to their superior properties, such as high photoluminescence, tunable emission wavelengths, and easy fabrication processes. In this review, we summarize the research progress of RLs based on perovskite nanomaterials. We first present the evolution of the RLs based on the perovskite quantum dots (QDs) and perovskite films. The fabrication process of perovskite nano-/microstructures and lasers is discussed in detail. After that, the frontier applications of perovskite RLs are discussed. Finally, the challenges are discussed, and the prospects for further development are proposed.
Collapse
Affiliation(s)
- Lei Wang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | | | | | | | - Yong Lv
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| |
Collapse
|
9
|
Wang J, Zhang S, Li Y, Wu C, Zhang W, Zhang H, Xie Z, Zhou S. Ultra-Broadband Random Laser and White-Light Emissive Carbon Dots/Crystal In-Situ Hybrids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203152. [PMID: 36026553 DOI: 10.1002/smll.202203152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The continuous white-light emission of carbon dots (CDs) can be applied to producing multicolor laser emissions by one single medium. Meanwhile, the solid-state emission greatly contributes to its practical application. In this work, a strategy to realize the in-situ hybridization of silane-functionalized CDs (SiCDs) and 1,3,5-benzenetricarboxylic acid trimethyl ester (Et3BTC) by a one-pot solvothermal method is reported. Significantly, the SiCDs/Et3BTC hybrid crystals exhibit ultra-broadband random laser emission over the near ultraviolet-visible region under 265 nm nanosecond pulsed laser excitation. The wavelength region of laser emission is achieved from 315 to 600 nm within an emission band of CDs-based materials. It is worth noting that the wavelength range of the laser is wider than the previously reported works. It is proposed that the continuous white-light emission of SiCDs caused by multiple fluorescence centers mainly gives rise to the broadband random laser emission. Moreover, the crystals are conducive to forming resonance and realizing solid-state laser emission. This in-situ method is expected to enable a more convenient, cheaper, and greener approach to prepare luminescent hybrids for application in multicolor laser displays, multi-level laser anti-counterfeiting, supercontinuum light sources, and so on.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaofeng Zhang
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yunfei Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Cuiyu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenfei Zhang
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hailong Zhang
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
10
|
A facile way to construct highly stable PUF tags for unclonable anti-counterfeiting and authentication with computer vision. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|