1
|
Ding YM, Huo Y, Fang G, Yan L, Wu Y, Zhou L. Two-dimensional half-metals MSi 2N 4 (M = Al, Ga, In, Tl) with intrinsic p-type ferromagnetism and ultrawide bandgaps. Phys Chem Chem Phys 2024; 26:13327-13334. [PMID: 38639877 DOI: 10.1039/d3cp05940e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Intrinsic half-metallic nanomaterials with 100% spin polarization are highly demanded for next-generation spintronic devices. Here, by using first-principles calculations, we have designed a class of new two-dimensional (2D) p-type half-metals, MSi2N4 (M = Al, Ga, In and Tl), which show high mechanical, thermal and dynamic stabilities. MSi2N4 not only have ultrawide electronic bandgaps for spin-up channels in the range of 4.05 to 6.82 eV but also have large half-metallic gaps in the range of 0.75 to 1.47 eV, which are large enough to prevent the spin-flip transition. The calculated magnetic moment is 1 μB per cell, resulting from polarized N1-px/py orbitals. Moreover, MSi2N4 possess robust long-range ferromagnetic orderings with Curie temperatures in the range of 35-140 K, originating from the interplay of N1-M-N1 superexchange interactions. Furthermore, spin dependent electronic transport calculations reveal 100% spin polarization. Our results highlight new promising 2D ferromagnetic half-metals toward future spintronic applications.
Collapse
Affiliation(s)
- Yi-Min Ding
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Yiqi Huo
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Gaojing Fang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Luo Yan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yu Wu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| | - Liujiang Zhou
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
2
|
Wang Z, Lou H, Yan X, Liu Y, Yang G. 2D antiferromagnetic semiconducting FeCN with interesting properties. Phys Chem Chem Phys 2023; 25:32416-32420. [PMID: 38010895 DOI: 10.1039/d3cp04820a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Two-dimensional magnetic materials have demonstrated favorable properties (e.g., large spin polarization and net magnetization) for the development of next-generation spintronic devices. The discovery of such materials and insight into their magnetic coupling mechanism has become a research focus. Here, on the basis of first-principles structural search calculations, we have identified a fresh FeCN monolayer consisting of edge-sharing Fe triangle sublattices and FeC3N2 rings, which integrates antiferromagnetism, semiconductivity, and planarity. Interestingly, it possesses a large magnetic anisotropy energy (MAE) of 614 μeV per Fe atom, a narrow band gap (Eg) of 0.47 eV, a large magnetic moment of 3.15 μB, and a proper Néel temperature (TN) of 97 K. The direct exchange between the nearest-neighbor Fe atoms in the triangle sublattice is mainly responsible for the AFM ordering. Its high structural stability, stemming from the collective contribution of covalent C-C and C-N bonds, ionic Fe-N bonds, and metallic Fe-Fe bonds, provides a strong feasibility for experimental synthesis.
Collapse
Affiliation(s)
- Zhicui Wang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Huan Lou
- Department of Physics, College of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
3
|
Han F, Yan X, Bergara A, Li W, Yu H, Yang G. A Janus CrSSe monolayer with interesting ferromagnetism. Phys Chem Chem Phys 2023; 25:29672-29679. [PMID: 37882360 DOI: 10.1039/d3cp04584f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The search for intrinsic half-metallic ferromagnetic (FM) monolayers with a high Curie temperature (TC), considerable magnetic anisotropy energy (MAE), and multiferroic coupling is key for the development of ultra-compact spintronics. Here, we have identified a new stable FM Janus monolayer, the tetrahedral CrSSe, through first-principles structural search calculations, which not only exhibits very interesting magnetoelectric properties with a high TC of 790 K, a large MAE of 0.622 meV per Cr, and robust half-metallicity, but also shows obvious ferroelasticity with a modest energy barrier of 0.31 eV per atom. Additionally, there appears to be interesting multiferroic coupling between in-plane magnetization and ferroelasticity. Furthermore, by replacing the Se/S atoms in the CrSSe monolayer with S/Se atoms, we obtained two new half-metallic FM CrS2 and CrSe2 monolayers, which also exhibit excellent magnetoelectric properties. Therefore, our findings provide a pathway to design novel multiferroic materials and enrich the understanding of 2D transition metal chalcogenides.
Collapse
Affiliation(s)
- Fanjunjie Han
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Aitor Bergara
- Departmento de Física y EHU Quantum Center, Universidad del País Vasco, UPV/EHU, 48080 Bilbao, Spain.
- Donostia International Physics Center (DIPC), 20018 Donostia, Spain
- Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain
| | - Wenjing Li
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Hong Yu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Guochun Yang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
4
|
Zhang J, He Z, Gao C, Tao Y, Liang F, Li G, Gao B, Song G. Intrinsic half-metallicity in two-dimensional Cr 2TeX 2 (X = I, Br, Cl) monolayers. RSC Adv 2023; 13:29721-29728. [PMID: 37822665 PMCID: PMC10562977 DOI: 10.1039/d3ra05780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Two-dimensional (2D) materials with intrinsic half-metallicity at or above room temperature are important in spin nanodevices. Nevertheless, such 2D materials in experiment are still rarely realized. In this work, a new family of 2D Cr2TeX2 (X = I, Br, Cl) monolayers has been predicted using first-principles calculations. The monolayer is made of five atomic sublayers with ABCAB-type stacking along the perpendicular direction. It is found that the energies for all the ferromagnetic (FM) half-metallic states are the lowest. The phonon spectrum calculations and molecular dynamics simulations both demonstrate that the FM states are stable, indicating the possibility of experimentally obtaining the 2D Cr2TeX2 monolayers with half-metallicity. The Curie temperatures from Monte Carlo simulations are 486, 445, and 451 K for Cr2TeI2, Cr2TeBr2, and Cr2TeCl2 monolayers, respectively, and their half-metallic bandgaps are 1.72, 1.86 and 1.90 eV. The corresponding magnetocrystalline anisotropy energies (MAEs) are about 1185, 502, 899 μeV per Cr atom for Cr2TeX2 monolayers, in which the easy axes are along the plane for the Cr2TeBr2 and Cr2TeCl2 monolayers, but being out of the plane in the Cr2TeI2. Our study implies the potential application of the 2D Cr2TeX2 (X = I, Br, Cl) monolayers in spin nanodevices.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Zixin He
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Chuchu Gao
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Yanyan Tao
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Feng Liang
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Guannan Li
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Benling Gao
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
| | - Guang Song
- Department of Physics, Huaiyin Institute of Technology 1 Meicheng East Road Huaian 223003 China
- Department of Physics, Nanjing University 22 Hankou Road Nanjing 210093 China
| |
Collapse
|
5
|
Wang Z, Lou H, Han F, Yan X, Liu Y, Yang G. An antiferromagnetic semiconducting FeCN 2 monolayer with a large magnetic anisotropy and strong magnetic coupling. Phys Chem Chem Phys 2023; 25:21521-21527. [PMID: 37545317 DOI: 10.1039/d3cp02267f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Two-dimensional antiferromagnetic (AFM) materials with an intrinsic semiconductivity, a high critical temperature, and a sizable magnetic anisotropy energy (MAE) have attracted extensive attention because they show promise for high-performance spintronic nanodevices. Here, we have identified a new FeCN2 monolayer with a unique zigzag Fe chain through first-principles swarm structural search calculations. It is an AFM semiconductor with a direct band gap of 2.04 eV, a Néel temperature (TN) of 176 K, and a large in-plane MAE of 0.50 meV per Fe atom. More interestingly, the intrinsic antiferromagnetism, contributed by the strong magnetic coupling of neighbouring Fe ions, can be maintained under the external biaxial strains. A large cohesive energy and high dynamical stability favor synthesis and application. Therefore, these fascinating properties of the FeCN2 monolayer make it a promising nanoscale spintronic material.
Collapse
Affiliation(s)
- Zhicui Wang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Huan Lou
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
- Department of Physics, College of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Fanjunjie Han
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
6
|
Zou Y, Wang X, Liu L, Song T, Liu Z, Cui X. First-Principles Study on Mechanical, Electronic, and Magnetic Properties of Room Temperature Ferromagnetic Half-Metal MnNCl Monolayer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111712. [PMID: 37299615 DOI: 10.3390/nano13111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Two-dimensional ferromagnetic (FM) half-metals are highly desirable for the development of multifunctional spintronic nano-devices due to their 100% spin polarization and possible interesting single-spin electronic states. Herein, using first-principles calculations based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) functional, we demonstrate that the MnNCl monolayer is a promising FM half-metal for spintronics. Specifically, we systematically investigated its mechanical, magnetic, and electronic properties. The results reveal that the MnNCl monolayer has superb mechanic, dynamic, and thermal (ab initio molecular dynamics (AIMD) simulation at 900 K) stability. More importantly, its intrinsic FM ground state has a large magnetic moment (6.16 μB), a large magnet anisotropy energy (184.5 μeV), an ultra-high Curie temperature (952 K), and a wide direct band gap (3.10 eV) in the spin-down channel. Furthermore, by applying biaxial strain, the MnNCl monolayer can still maintain its half-metallic properties and shows an enhancement of magnetic properties. These findings establish a promising new two-dimensional (2D) magnetic half-metal material, which should expand the library of 2D magnetic materials.
Collapse
Affiliation(s)
- Yuxin Zou
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Xin Wang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Liwei Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Tielei Song
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Zhifeng Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Xin Cui
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Li X, Zhang F, Li J, Wang Z, Huang Z, Yu J, Zheng K, Chen X. Pentagonal C mX nY 6-m-n ( m = 2, 3; n = 1, 2; X, Y = B, N, Al, Si, P) Monolayers: Janus Ternaries Combine Omnidirectional Negative Poisson Ratios with Giant Piezoelectric Effects. J Phys Chem Lett 2023; 14:2692-2701. [PMID: 36892273 DOI: 10.1021/acs.jpclett.3c00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) materials composed of pentagon and Janus motifs usually exhibit unique mechanical and electronic properties. In this work, a class of ternary carbon-based 2D materials, CmXnY6-m-n (m = 2, 3; n = 1, 2; X, Y = B, N, Al, Si, P), are systematically studied by first-principles calculations. Six of 21 Janus penta-CmXnY6-m-n monolayers are dynamically and thermally stable. The Janus penta-C2B2Al2 and Janus penta-Si2C2N2 exhibit auxeticity. More strikingly, Janus penta-Si2C2N2 exhibits an omnidirectional negative Poisson ratio (NPR) with values ranging from -0.13 to -0.15; in other words, it is auxetic under stretch in any direction. The calculations of piezoelectricity reveal that the out-of-plane piezoelectric strain coefficient (d32) of Janus panta-C2B2Al2 is up to 0.63 pm/V and increases to 1 pm/V after a strain engineering. These omnidirectional NPR, giant piezoelectric coefficients endow the Janus pentagonal ternary carbon-based monolayers as potential candidates in the future nanoelectronics, especially in the electromechanical devices.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| | - Fusheng Zhang
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 400044 Chongqing, China
| | - Jian Li
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 400044 Chongqing, China
| | - Zeping Wang
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| | - Zhengyong Huang
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 400044 Chongqing, China
| | - Jiabing Yu
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| | - Kai Zheng
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens, Lyngby 2800, Denmark
| | - Xianping Chen
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| |
Collapse
|
8
|
Wang J, Wang D. Two-dimensional spin-gapless semiconductors: A mini-review. Front Chem 2022; 10:996344. [PMID: 36092680 PMCID: PMC9452911 DOI: 10.3389/fchem.2022.996344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, two-dimensional (2D) materials and spintronic materials have been rapidly developing in recent years. 2D spin-gapless semiconductors (SGSs) are a novel class of ferromagnetic 2D spintronic materials with possible high Curie temperature, 100% spin-polarization, possible one-dimensional or zero-dimensional topological signatures, and other exciting spin transport properties. In this mini-review, we summarize a series of ideal 2D SGSs in the last 3 years, including 2D oxalate-based metal-organic frameworks, 2D single-layer Fe2I2, 2D Cr2X3 (X = S, Se, and Te) monolayer with the honeycomb kagome (HK) lattice, 2D CrGa2Se4 monolayer, 2D HK Mn-cyanogen lattice, 2D MnNF monolayer, and 2D Fe4N2 pentagon crystal. The mini-review also discusses the unique magnetic, electronic, topological, and spin-transport properties and the possible application of these 2D SGSs. The mini-review can be regarded as an improved understanding of the current state of 2D SGSs in recent 3 years.
Collapse
Affiliation(s)
| | - Dandan Wang
- School of Physical Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Abedi S, Taghizadeh Sisakht E, Hashemifar SJ, Ghafari Cherati N, Abdolhosseini Sarsari I, Peeters FM. Prediction of novel two-dimensional Dirac nodal line semimetals in Al 2B 2 and AlB 4 monolayers. NANOSCALE 2022; 14:11270-11283. [PMID: 35880622 DOI: 10.1039/d2nr00888b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Topological semimetal phases in two-dimensional (2D) materials have gained widespread interest due to their potential applications in novel nanoscale devices. Despite the growing number of studies on 2D topological nodal lines (NLs), candidates with significant topological features that combine nontrivial topological semimetal phase with superconductivity are still rare. Herein, we predict Al2B2 and AlB4 monolayers as new 2D nonmagnetic Dirac nodal line semimetals with several novel features. Our extensive electronic structure calculations combined with analytical studies reveal that, in addition to multiple Dirac points, these 2D configurations host various highly dispersed NLs around the Fermi level, all of which are semimetal states protected by time-reversal and in-plane mirror symmetries. The most intriguing NL in Al2B2 encloses the K point and crosses the Fermi level, showing a considerable dispersion and thus providing a fresh playground to explore exotic properties in dispersive Dirac nodal lines. More strikingly, for the AlB4 monolayer, we provide the first evidence for a set of 2D nonmagnetic open type-II NLs coexisting with superconductivity at a rather high transition temperature. The coexistence of superconductivity and nontrivial band topology in AlB4 not only makes it a promising material to exhibit novel topological superconducting phases, but also a rather large energy dispersion of type-II nodal lines in this configuration may offer a platform for the realization of novel topological features in the 2D limit.
Collapse
Affiliation(s)
- Saeid Abedi
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | - S Javad Hashemifar
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Nima Ghafari Cherati
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | - Francois M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| |
Collapse
|