1
|
Guo J, Du F, Yu B, Du P, Li H, Zhang J, Xin H. Heptacyclic aromatic hydrocarbon isomers with two azulene units fused. Chem Sci 2024; 15:12589-12597. [PMID: 39118621 PMCID: PMC11304730 DOI: 10.1039/d4sc02566k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Azulene, known for its unique electronic properties and structural asymmetry, serves as a promising building block for the design of novel non-benzenoid polycyclic aromatic hydrocarbons (PAHs). Herein, we present the synthesis, characterization, and physical properties of three diazulene-fused heptacyclic aromatic hydrocarbons, 8,17-dioctyldiazuleno[2,1-a:2',1'-h]anthracene (trans configuration), 16,18-dioctyldiazuleno[2,1-a:1',2'-j]anthracene (cis configuration) and 3,18-dioctyldiazuleno[2,1-a:1',2'-i]phenanthrene (zigzag configuration). Three compounds are configurational isomers with different fusing patterns of aromatic rings. All three isomers exhibit pronounced aromaticity, as revealed by nuclear magnetic resonance spectroscopy and theoretical calculations. They exhibit characteristics of both azulene and benzenoid PAHs and are much more stable than their all-benzene analogues. The optical and electrochemical properties of these three isomers were investigated through UV-vis absorption spectra and cyclic voltammetry, revealing distinct behaviors influenced by their molecular configurations. Furthermore, the isomer in trans configuration exhibits promising semiconducting properties with a hole mobility of up to 0.22 cm2 V-1 s-1, indicating its potential in organic electronics applications.
Collapse
Affiliation(s)
- Jianwen Guo
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Fangxin Du
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Bo Yu
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Pengcheng Du
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Haoyuan Li
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Jianhua Zhang
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Hanshen Xin
- School of Microelectronics, Shanghai University 201800 Shanghai China
| |
Collapse
|
2
|
Merkhatuly N, Iskanderov A, Abeuova S, Iskanderov A, Zhokizhanova S. Introduction of Electron Donor Groups into the Azulene Structure: The Appearance of Intense Absorption and Emission in the Visible Region. Molecules 2024; 29:3354. [PMID: 39064932 PMCID: PMC11279626 DOI: 10.3390/molecules29143354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
In this work, through the Suzuki-Miyaura cross-coupling reaction with high yields, new π-conjugated azulene compounds containing diphenylaniline groups at positions 2 and 6 of azulene were synthesized. The obtained diphenylaniline-azulenes have intensely visible-light absorbing and emitting (in the wavelength range from 400 to 600 nm) properties. It has been shown that such unique optical properties, in particular fluorescent emission in the region of blue and green photoluminescence (λem at 495 and 525 nm), which were absent in the original azulene, are the result of the electron donor effect of diphenylaniline groups, which significantly changes the electronic structure of azulene and leads to the allowed HOMO → LUMO electron transition.
Collapse
Affiliation(s)
- Nurlan Merkhatuly
- Department of Inorganic and Technical Chemistry, Karaganda Buketov University, Karaganda 100028, Kazakhstan;
| | - Ablaykhan Iskanderov
- Department of Inorganic and Technical Chemistry, Karaganda Buketov University, Karaganda 100028, Kazakhstan;
| | - Saltanat Abeuova
- Graduate School of Science, Astana International University, Astana 020000, Kazakhstan;
| | - Amantay Iskanderov
- Department of Inorganic and Technical Chemistry, Karaganda Buketov University, Karaganda 100028, Kazakhstan;
| | - Saltanat Zhokizhanova
- Department of Physics and Chemistry, Saken Seifullin Kazakh Agro Technical Research University, Astana 010000, Kazakhstan;
| |
Collapse
|
3
|
Tsuchiya T, Hamano T, Inoue M, Nakamura T, Wakamiya A, Mazaki Y. Intense absorption of azulene realized by molecular orbital inversion. Chem Commun (Camb) 2023; 59:10604-10607. [PMID: 37528776 DOI: 10.1039/d3cc02311g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The introduction of diarylamino groups at the 2- and 6-positions of azulene was found to invert the order of the orbital energy levels and allowed the HOMO-LUMO transition, resulting in a substantial increase in absorbance in the visible region. In addition, the stability of their one-electron oxidised species was improved by introducing bromine or methoxy groups at the 1- and 3-positions.
Collapse
Affiliation(s)
- Takahiro Tsuchiya
- Department of Chemistry, Kitasato University Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan.
| | - Tomohiro Hamano
- Department of Chemistry, Kitasato University Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan.
| | - Masahiro Inoue
- Department of Chemistry, Kitasato University Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan.
| | - Tomoya Nakamura
- Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University Uji, Kyoto 611-0011, Japan
| | - Yasuhiro Mazaki
- Department of Chemistry, Kitasato University Kitasato 1-15-1, Sagamihara, Kanagawa 252-0373, Japan.
| |
Collapse
|
4
|
Sezgin B, Liu J, N. Gonçalves DP, Zhu C, Tilki T, Prévôt ME, Hegmann T. Controlling the Structure and Morphology of Organic Nanofilaments Using External Stimuli. ACS NANOSCIENCE AU 2023; 3:295-309. [PMID: 37601923 PMCID: PMC10436377 DOI: 10.1021/acsnanoscienceau.3c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 08/22/2023]
Abstract
In our continuing pursuit to generate, understand, and control the morphology of organic nanofilaments formed by molecules with a bent molecular shape, we here report on two bent-core molecules specifically designed to permit a phase or morphology change upon exposure to an applied electric field or irradiation with UV light. To trigger a response to an applied electric field, conformationally rigid chiral (S,S)-2,3-difluorooctyloxy side chains were introduced, and to cause a response to UV light, an azobenzene core was incorporated into one of the arms of the rigid bent core. The phase behavior as well as structure and morphology of the formed phases and nanofilaments were analyzed using differential scanning calorimetry, cross-polarized optical microscopy, circular dichroism spectropolarimetry, scanning and transmission electron microscopy, UV-vis spectrophotometry, as well as X-ray diffraction experiments. Both bent-core molecules were characterized by the coexistence of two nanoscale morphologies, specifically helical nanofilaments (HNFs) and layered nanocylinders, prior to exposure to an external stimulus and independent of the cooling rate from the isotropic liquid. The application of an electric field triggers the disappearance of crystalline nanofilaments and instead leads to the formation of a tilted smectic liquid crystal phase for the material featuring chiral difluorinated side chains, whereas irradiation with UV light results in the disappearance of the nanocylinders and the sole formation of HNFs for the azobenzene-containing material. Combined results of this experimental study reveal that in addition to controlling the rate of cooling, applied electric fields and UV irradiation can be used to expand the toolkit for structural and morphological control of suitably designed bent-core molecule-based structures at the nanoscale.
Collapse
Affiliation(s)
- Barış Sezgin
- Department
of Chemistry, Süleyman Demirel University, 32260 Isparta, Çünür, Turkey
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
| | - Jiao Liu
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
- Materials
Science Graduate Program, Kent State University, Kent, Ohio 44242 United States
| | - Diana P. N. Gonçalves
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242 United States
| | - Chenhui Zhu
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720 United States
| | - Tahir Tilki
- Department
of Chemistry, Süleyman Demirel University, 32260 Isparta, Çünür, Turkey
| | - Marianne E. Prévôt
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
| | - Torsten Hegmann
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 United States
- Materials
Science Graduate Program, Kent State University, Kent, Ohio 44242 United States
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242 United States
- Brain Health
Research Institute, Kent State University, Kent, Ohio 44242 United States
| |
Collapse
|
5
|
Mathey P, Lirette F, Fernández I, Renn L, Weitz RT, Morin JF. Annulated Azuleno[2,1,8-ija]azulenes: Synthesis and Properties. Angew Chem Int Ed Engl 2023; 62:e202216281. [PMID: 36645326 DOI: 10.1002/anie.202216281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Non-alternant non-benzenoid hydrocarbons exhibit very different optical and electronic properties than their well-studied benzenoid analogues. However, preparing such structures with extended conjugation length, remains challenging. Herein, we report the synthesis and properties of azuleno[2,1,8-ija]azulene derivatives using a two-step sequence involving a four-fold aldol condensation between aromatic dialdehydes and readily available tetrahydropentalene-2,5-(1H,3H)-dione. Molecules with band gap values ranging from 1.69 to 2.14 eV and molar extinction coefficients (ϵ) of nearly 3×105 M-1 cm-1 have been prepared. These annulene-like structures exhibit significant diatropic ring currents (aromatic), as supported by 1 H NMR spectroscopy and DFT calculations. Field-effect transistors (OFETs) using azuleno[2,1,8-ija]azulene derivatives as semiconductors exhibit charge mobility values of up to 0.05 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Pierre Mathey
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Medecine, Québec, QC, G1V0A6, Canada
| | - Frédéric Lirette
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Medecine, Québec, QC, G1V0A6, Canada
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Lukas Renn
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| | - R Thomas Weitz
- 1st Institute of Physics, Faculty of Physics, Georg-August-University, Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| | - Jean-François Morin
- Department of Chemistry and Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1045 Ave de la Medecine, Québec, QC, G1V0A6, Canada
| |
Collapse
|
6
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
7
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
8
|
Li M, Wang DH. Copper-Catalyzed 3-Positional Amination of 2-Azulenols with O-Benzoylhydroxylamines. Org Lett 2021; 23:6638-6641. [PMID: 34388336 DOI: 10.1021/acs.orglett.1c02132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed ortho-selective amination of 2-azulenols with O-benzoylhydroxylamines (RR'N-OBz) to synthesize ortho-aminoazulenols is reported. A wide range of functional groups on amines are compatible, furnishing the corresponding amino-azulene derivatives in moderate to good yields. The further synthetic elaboration using 3-amino-2-azulenols as starting materials is demonstrated.
Collapse
Affiliation(s)
- Meng Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Dong-Hui Wang
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
9
|
Zhu Q, Png ZM, Lin T, Loh XJ, Tang T, Xu J. Synthesis and Halochromic Properties of 1,2,6-Tri- and 1,2,3,6-Tetra-aryl Azulenes. Chempluschem 2021; 86:1116-1122. [PMID: 34402212 DOI: 10.1002/cplu.202100261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/22/2021] [Indexed: 11/06/2022]
Abstract
A series of novel 2,6-functionalized azulene molecules Azu1-3 with varied fluorene substituents at the 1- and 3-positions of azulene as well as at the 5'-position of 2-thiophene group were synthesized. Their electronic absorption and emission spectra at neutral and protonated states were examined. It was found that after functionalization with fluorenyl groups, Azu1-3 exhibited absorption maxima at 445, 451 to 468 nm, respectively. In contrast, their corresponding protonated species showed much redshifted absorption maxima at 560, 582 to 643 nm, respectively, mainly due to the extension of conjugation length and the large dipole moment along the C2v axis of 2,6-substituted azulene molecules. Azu1-3 are non-fluorescent in their neutral forms, but became emissive in their protonated states. Analysis of absorption and emission spectra shows that substitution of the 1- or 3-position of azulene led to decrease in response to trifluoroacetic acid.
Collapse
Affiliation(s)
- Qiang Zhu
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zhuang Mao Png
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Tingting Lin
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Tao Tang
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|