1
|
Sánchez-Mora A, Briñez E, Pico A, González-Sebastián L, Antonio Cruz-Navarrro J, Arenaza-Corona A, Puentes-Díaz N, Alí-Torres J, Reyes-Márquez V, Morales-Morales D. Synthesis of Para-Acetylated Functionalized Ni(II)-POCOP Pincer Complexes and Their Cytotoxicity Evaluation Against Human Cancer Cell Lines. Chem Biodivers 2024; 21:e202400995. [PMID: 39001660 DOI: 10.1002/cbdv.202400995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
A series of three Ni(II)-POCOP complexes para-functionalized with an acetoxyl fragment were synthesized. All complexes (2 a-c) were fully characterized through standard analytical techniques. The molecular structure of complex 2 b was unambiguously determined by single-crystal X-ray diffraction, revealing that the metal center is situated in a slightly distorted square-planar environment. Additionally, the acetoxy fragment at the para-position of the phenyl ring was found to be present. The in vitro cytotoxic activity of all complexes was assessed on six human cancer cell lines. Notably, complex 2 b exhibited selective activity against K-562 (chronic myelogenous leukemia) and MCF-7 (mammary adenocarcinoma) with IC50 values of 7.32±0.60 μM and 14.36±0.02 μM, respectively. Furthermore, this compound showed negligible activity on the healthy cell line COS-7, highlighting the potential therapeutic application of 2 b. The cytotoxic evaluations were further complemented with molecular docking calculations to explore the potential biological targets of complex 2 b, revealing interactions with cluster differentiation protein 1a (CD1 A, PDB: 1xz0) for K-562 and with the progesterone receptor for MCF-7.
Collapse
Affiliation(s)
- Arturo Sánchez-Mora
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Edwin Briñez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Alejandro Pico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Lucero González-Sebastián
- Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de México, C.P. 09340, México
| | - J Antonio Cruz-Navarrro
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| | - Nicolás Puentes-Díaz
- Departamento de Química, Universidad Nacional de Colombia -Sede Bogotá, Bogotá DC, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia -Sede Bogotá, Bogotá DC, Colombia
| | - Viviana Reyes-Márquez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Luis Encinas y Rosales s/n, Hermosillo, Sonora, C.P. 83000, Mexico
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
| |
Collapse
|
2
|
Das A, Sankaralingam M. Unravelling the mechanism of apoptosis induced by copper(II) complexes of NN 2-pincer ligands in lung cancer cells. Dalton Trans 2024; 53:14364-14377. [PMID: 39136161 DOI: 10.1039/d4dt01075b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The invention of efficient chemotherapeutic drugs is essential for human health and development. Keeping this in mind, a series of copper(II) pincer complexes, 1-4, of ligands L1(H) = 2-morpholino-N-(quinolin-8-yl)acetamide, L2(H) = 2-di-n-propylamino-N-(quinolin-8-yl)acetamide, L3(H) = 2-di-n-butylamino-N-(quinolin-8-yl)acetamide and L4(H) = 2-di-n-benzylamino-N-(quinolin-8-yl)acetamide have been synthesized, characterized, and utilized for inhibiting cancer proliferation. Complexes 1-4 showed very efficient activity against lung (A549) and breast (MCF-7) cancer cells, which are the most frequently diagnosed cancers according to the WHO. Among them, 1 was highly active against lung cancer cells with an IC50 value of 8 μM, showing no toxicity towards common L929 fibroblast cell lines (IC50 > 1000 μM). Moreover, AO-EB staining inferred that this cellular demise was attributed to apoptosis, which was determined to be 25.91% of cells by flow cytometry at the IC50 concentration. Furthermore, carboxy-H2DCFDA staining revealed the involvement of ROS in the mechanism. Interestingly, JC-1 dye staining revealed a change in the potential of the mitochondrial membrane, which indicates the enhanced production of ROS in mitochondria. A deep search for the mechanism through in silico studies guided us to the fact that complexes 1-4 might perturb the function of complex I in mitochondria. Furthermore, the studies can be expanded towards clinical applications mainly with morpholine appended complex 1.
Collapse
Affiliation(s)
- Athulya Das
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
| |
Collapse
|
3
|
Tanwar D, Kaur T, Sudheendranath A, Kumar U, Sharma D. Pd(II) complexes bearing NNS pincer ligands: unveiling potent cytotoxicity against breast and pancreatic cancer. Dalton Trans 2024; 53:9798-9811. [PMID: 38787690 DOI: 10.1039/d4dt00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The continuously increasing rate of breast cancer is one of the major threats to female health worldwide. Recently, palladium complexes have emerged as impressive candidates with effective biocompatibility and anticancer activities. Hence, in the present study, we report a new series of palladium complexes bearing NNS pincer ligands for cytotoxicity studies. The reaction of thiophenol/4-chlorothiophenol/4-methylthiophenol/4-methoxythiophenol with 2-bromo-N-quinolin-8-yl-acetamide in the presence of sodium hydroxide in ethanol at 80 °C gave [C9H6N-NH-C(O)-CH2-S-Ar] [Ar = C6H5 (L1), C6H4Cl-4 (L2), C6H4Me-4 (L3), and C6H4-OMe-4 (L4)]. The corresponding reaction of L1-L4 with Na2PdCl4 in methanol at room temperature for 3 h resulted in complexes [(L1-H)PdCl] (C1), [(L2-H)PdCl] (C2), [(L3-H)PdCl] (C3), and [(L4-H)PdCl] (C4). All new compounds have been characterized by spectroscopic analyses. The structures of complexes C1, C3, and C4 have also been determined from single-crystal X-ray diffraction data. The cytotoxicities of L1-L4 and C1-C4 have been investigated for breast cancer 4T1 and pancreatic cancer MIA-PaCa-2 cells. The IC50 values for complexes C2 and C3 were observed to be comparable to or higher than those of cisplatin. The stressed morphology and cell death of cancerous cells were successfully observed through cellular morphology analysis and the assessment of cytoskeleton damage.
Collapse
Affiliation(s)
- Deepika Tanwar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi-110019, India.
- Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Tashmeen Kaur
- Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab-140306, India.
| | - Athul Sudheendranath
- Department of Chemistry, Indian Institute of Technology, New Delhi-110016, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi-110019, India.
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab-140306, India.
| |
Collapse
|
4
|
Choroba K, Machura B, Erfurt K, Casimiro AR, Cordeiro S, Baptista PV, Fernandes AR. Copper(II) Complexes with 2,2':6',2″-Terpyridine Derivatives Displaying Dimeric Dichloro-μ-Bridged Crystal Structure: Biological Activities from 2D and 3D Tumor Spheroids to In Vivo Models. J Med Chem 2024; 67:5813-5836. [PMID: 38518246 PMCID: PMC11017252 DOI: 10.1021/acs.jmedchem.4c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Eight 2,2':6',2″-terpyridines, substituted at the 4'-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute
of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department
of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Ana Rita Casimiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of
Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Kozlov VA, Aleksanyan DV, Churusova SG, Spiridonov AA, Rybalkina EY, Gutsul EI, Aksenova SA, Korlyukov AA, Peregudov AS, Klemenkova ZS. Unsymmetrical Pd(II) Pincer Complexes with Benzothiazole and Thiocarbamate Flanking Units: Expedient Solvent-Free Synthesis and Anticancer Potential. Int J Mol Sci 2023; 24:17331. [PMID: 38139160 PMCID: PMC10744248 DOI: 10.3390/ijms242417331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Driven by the growing threat of cancer, many research efforts are directed at developing new chemotherapeutic agents, where the central role is played by transition metal complexes. The proper ligand design serves as a key factor to unlock the anticancer potential of a particular metal center. Following a recent trend, we have prepared unsymmetrical pincer ligands that combine benzothiazole and thiocarbamate donor groups. These compounds are shown to readily undergo direct cyclopalladation, affording the target S,C,N-type Pd(II) pincer complexes both in solution and in the absence of a solvent. The solid-phase strategy provided the complexes in an efficient and ecologically friendly manner. The resulting palladacycles are fully characterized using nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy and, in one case, by single-crystal X-ray diffraction (XRD). The solvent-free reactions are additionally analyzed by powder XRD. The pincer complexes exhibit remarkable cytotoxicity against several solid and blood cancer cell lines, including human colorectal carcinoma (HCT116), breast cancer (MCF7), prostate adenocarcinoma (PC3), chronic myelogenous leukemia (K562), multiple plasmacytoma (AMO1), and acute lymphoblastic leukemia (H9), with the dimethylamino-substituted derivative being particularly effective. The latter also induced an appreciable level of apoptosis in both parental and doxorubicin-resistant cells K562 and K562/iS9, vindicating the high anticancer potential of this type of palladacycles.
Collapse
Affiliation(s)
- Vladimir A. Kozlov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Diana V. Aleksanyan
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
- Scientific Laboratory “Advanced Composite Materials and Technologies”, Plekhanov Russian University of Economics, Stremyannyi per. 36, 117997 Moscow, Russia
| | - Svetlana G. Churusova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Aleksandr A. Spiridonov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Ekaterina Yu. Rybalkina
- N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe shosse 23, 115478 Moscow, Russia;
| | - Evgenii I. Gutsul
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Svetlana A. Aksenova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Alexander S. Peregudov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| | - Zinaida S. Klemenkova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Str. 1, 119334 Moscow, Russia; (V.A.K.); (S.G.C.); (A.A.S.); (E.I.G.); (S.A.A.); (A.A.K.); (A.S.P.); (Z.S.K.)
| |
Collapse
|
6
|
Ameskal M, Taakili R, Gulyaeva ES, Duhayon C, Willot J, Lugan N, Lepetit C, Valyaev DA, Canac Y. Phosphine-NHC-Phosphonium Ylide Pincer Ligand: Complexation with Pd(II) and Unconventional P-Coordination of the Ylide Moiety. Inorg Chem 2023. [PMID: 37996076 DOI: 10.1021/acs.inorgchem.3c03025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
An efficient synthesis of two pincer preligands [Ph2PCH(R)ImCH2CH2CH2PPh3]X2 (R = H, X = OTf; R = Ph, X = BF4) was developed. Subsequent reactions with PdCl2 and an excess of Cs2CO3 led to the formation of highly stable cationic ortho-metalated Pd(II) complexes [(P,C,C,C)Pd]X exhibiting phosphine, NHC, phosphonium ylide, and σ-aryl donor extremities. The protonation of one of the latter complexes with R = H affords the Pd(II) complex [(P,C,C)Pd(MeCN)](OTf)2 bearing an unprecedented nonsymmetrical NHC core pincer scaffold with a 5,6-chelating framework. The overall donor properties of this phosphine-NHC-phosphonium ylide ligand were estimated using the experimental νCN stretching frequency in the corresponding [(P,C,C)Pd(CNtBu](OTf)2 derivative and were shown to be competitive with the related bis(NHC)-phosphonium ylide and phenoxy-NHC-phosphonium ylide pincers. The presence of a phenyl substituent in the bridge between phosphine and NHC moieties in the ortho-metalated complex [(P,C,C,C)Pd](BF4) makes possible the deprotonation of this position using LDA to provide a persistent zwitterionic complex [(P,C,C,C)Pd] featuring a rare P-coordinated phosphonium ylide moiety in addition to a conventional C-coordinated one. The comparison of the 31P and 13C NMR data for these C- and P-bound phosphonium ylide fragments within the same molecule was performed for the first time, and the bonding situation in both cases was studied in detail by QTAIM and ELF topological analyses.
Collapse
Affiliation(s)
- Mohammad Ameskal
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | - Rachid Taakili
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | - Ekaterina S Gulyaeva
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow 119334, Russia
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | - Jérémy Willot
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | - Christine Lepetit
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse cedex 4, France
| |
Collapse
|
7
|
Jing J, Yu M, Pan L, Zhao Y, Xu G, Zhang HH, Li C, Zhang XP. Synthesis and Biological Activities of Luminescent 5,6-Membered Bis(Metallacyclic) Platinum(II) Complexes. Molecules 2023; 28:6369. [PMID: 37687198 PMCID: PMC10489632 DOI: 10.3390/molecules28176369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Four couples of 5,6-membered bis(metallacyclic) Pt(II) complexes with acetylide and isocyanide auxiliary ligands have been prepared and characterized. The structures of (-)-2 and (-)-3 are confirmed by single-crystal X-ray diffraction, showing a distorted square-planar coordination environment around the Pt(II) nucleus. Both solutions and solid samples of all complexes are emissive at RT. Acetylide-coordinated Pt(II) complexes have a lower energy emission than those isocyanide-coordinated ones. The emission spectra of N^N'*C-coordinated Pt(II) derivatives show a lower energy emission maximum relative to N^C*N'-coordinated complexes with the same auxiliary ligand. Moreover, the difference between cyclometalated N^N'*C and N^C*N' ligands exerts a more remarkable effect on the emission than the auxiliary ligands acetylide and isocyanide. Cytotoxicity and cell imaging of luminescent 5,6-membered bis(metallacyclic) Pt(II) complexes have been evaluated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao-Peng Zhang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.J.); (M.Y.); (L.P.); (Y.Z.); (G.X.); (H.-H.Z.); (C.L.)
| |
Collapse
|
8
|
Tanwar D, Kaur T, Kumar R, Ahluwalia D, Sharma D, Kumar U. Nickel Complexes Bearing ONS Chelating Ligands: A Promising Contender for In Vitro Cytotoxicity Effects on Human Pancreatic Cancer MIA-PaCa-2 Cells. ACS APPLIED BIO MATERIALS 2023; 6:134-145. [PMID: 36599051 DOI: 10.1021/acsabm.2c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The highly chronic human pancreatic cancer cell is one of the major reasons for cancerous death. Nickel complexes are recently gaining interest in anticancer activities on different types of cancer cells. Hence, in this study, we synthesized and characterized a series of ONS donor ligands [2-HO-C6H4-CH═N-(C6H4)-SH] (L1), [2-OH-3-OMe-C6H3-CH═N-(C6H4)-SH] (L2), [2-OH-3,5-(C(Me)3)2-C6H2-CH═N-(C6H4)-SH] (L3), [2-OH-C6H4-CH═N-(C6H4)-SMe] (L4), [2-OH-3-OMe-C6H3-CH═N-(C6H4)-SMe] (L5), [2-OH-3,5-(C(Me)3)2-C6H2-CH═N-(C6H4)-SMe] (L6) and their Ni(II) metal complexes [(MeOH)Ni(L1-L1-4H)] (1), [(MeOH)Ni(L2-L2-4H)] (2), [(MeOH)Ni(L3-L3-4H)] (3), [(L4-H)2Ni] (4), [(L5-H)2Ni] (5), and [(L6-H)2Ni] (6). The single-crystal X-ray diffraction data of complexes 1 and 4 were collected to elucidate the geometry around the metal center. The anticancer activity of complexes 1-6 was investigated on human pancreatic cancer cell line MIA-PaCa-2, which revealed that complexes 4 and 6 were the most significantly effective in decreasing the cell viability of cancer cells at the lowest dose. The structure parameters obtained from single-crystal X-ray diffraction data are found to be in good agreement with the data from density functional theory and Hirshfeld surface analysis for complex 1.
Collapse
Affiliation(s)
- Deepika Tanwar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi110019, India.,Department of Chemistry, University of Delhi, New Delhi110007, India
| | - Tashmeen Kaur
- Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab140306, India
| | - Robin Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi110019, India
| | - Deepali Ahluwalia
- Department of Applied Chemistry, Delhi Technological University, New Delhi110042, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Mohali, Punjab140306, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi110019, India
| |
Collapse
|
9
|
Thiophosphorylated indoles as a promising platform for the creation of cytotoxic Pd(II) pincer complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Structural elucidation and cytotoxicity profile of neocuproine-Cu(II) and Cu(I)-based chemotherapeutic agents: Effect of picric acid-derived cocrystals. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Churusova SG, Aleksanyan DV, Rybalkina EY, Gutsul EI, Peregudov AS, Klemenkova ZS, Nelyubina YV, Buyanovskaya AG, Kozlov VA. Pincer–dipeptide and pseudodipeptide conjugates: Synthesis and bioactivity studies. J Inorg Biochem 2022; 235:111908. [DOI: 10.1016/j.jinorgbio.2022.111908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
|
12
|
Al-Noaimi M, Awwadi FF, Hendal A, Aljammal A, Talib WH, Mahmod AI. Effect of chalcogen bonding interactions on molecular structures; theoretical and crystallographic studies on two palladium( ii) acetate complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01995g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New palladium complexes, [Pd(L)(OAc))], have been synthesized. The complexes and their ligand have been characterized by X-ray crystal structure analysis. Interestingly, the molecular structures of the two complexes are stabilized by S⋯O chalcogen bonds.
Collapse
Affiliation(s)
- Mousa Al-Noaimi
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
- Department of Chemistry, Faculty of science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Firas F. Awwadi
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Abdellah Hendal
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait
| | - Azzam Aljammal
- Department of Chemistry, Faculty of science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, 11931, Amman, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, 11931, Amman, Jordan
| |
Collapse
|