1
|
Sharma A, Vaid H, Kotwal R, Mughal ZN, Gurubrahamam R. Rhodium(II)-Catalyzed Alkynyl Carbene Insertion into N-H Bonds. Org Lett 2024; 26:4887-4892. [PMID: 38842489 DOI: 10.1021/acs.orglett.4c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The first insertion of an alkynyl carbene into N-H bonds under Rh-catalysis is developed. Alkynyl hydrazone carboxylates are used as donor-acceptor carbene precursors and are exquisitely inserted into the N-H bonds of various amines, amides, and 1,2-diamines. A wide variety of 3-alkynyl 3,4-dihydroquinoxalin-2(1H)-ones and densely functionalized α-alkynyl α-amino esters are obtained in good to excellent yields. Further, chemoselective N-H insertion reactions, mechanistic studies, and various synthetic transformations for obtaining valuable heterocycles are demonstrated.
Collapse
Affiliation(s)
- Akashdeep Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| | - Himani Vaid
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| | - Riya Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| | - Zuhaib N Mughal
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| | - Ramani Gurubrahamam
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| |
Collapse
|
2
|
Das S, Mandal A, Alam MT, Kumar C, Sarkar A, Senanayak SP, Bhattacharyya S, Zade SS. 4nπ Stable Multitasking Azapentacene: Acidochromism, Hole Mobility, and Visible Light Photoresponse. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37982-37989. [PMID: 35947785 DOI: 10.1021/acsami.2c04490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, we describe the synthesis, characterization, and optoelectronic investigation of a stable 4nπ dihydrotetraazapentacene derivative. The neutral dihydrotetraazapentacene contains a 24π-conjugated N-heteroacene core with two phenyl pendants appended thereof. The exceptional stability of this formally antiaromatic π-system is attributed to the fused dihydropyrazine ring, which has ethenamine (enamine) conjugations, and hence, the π-electrons delocalize over the nearly planar azapentacene core to endow with a global aromatic characteristic. The embedded dihydropyrazine also offers an additional Clar's sextet with enhanced aromaticity. The present dihydrotetraazapentacene can be considered as a multitasking N-heteroacene, which showed photoresponsive nature under visible light illumination, acidochromism in solution, and p-type charge transport with an appreciable field-effect hole mobility of 0.02 cm2 V-1 s-1 and a bulk p-type mobility of 0.98 × 10-4 cm2 V-1 s-1 in the space charge-limited regime of operation measured in the hole-only device. Nucleus-independent chemical shift calculation, anisotropy of the induced current density plot, and anisotropic mobility calculation were performed to support the experimental findings.
Collapse
Affiliation(s)
- Sarasija Das
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Arnab Mandal
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Md Tousif Alam
- Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research, OCC of HBNI, Jatni 752050, India
| | - Chandan Kumar
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Ayan Sarkar
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Satyaprasad P Senanayak
- Nanoelectronics and Device Physics Lab, School of Physical Sciences, National Institute of Science Education and Research, OCC of HBNI, Jatni 752050, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sanjio S Zade
- Department of Chemical Sciences, and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|