1
|
Zhou HY, Dong L. Synthesis of acridones via Ir(III)-catalyzed amination annulation of oxazoles with anthranils. Org Biomol Chem 2024; 22:4036-4040. [PMID: 38698770 DOI: 10.1039/d4ob00377b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An unprecedented Ir(III)-catalyzed C-H activation/amination/annulation of 2-phenyloxazoles with anthranils for the highly selective preparation of acridone derivatives in one-pot under controlled conditions is reported. This protocol is characterized by atom economy and high regioselectivity. A wide range of anthranils with 2-phenyloxazoles were well tolerated and afforded the desired products in moderate to good yields, in which the anthranil serves as a convenient amination reagent.
Collapse
Affiliation(s)
- Han-Yi Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Huang J, Guo W, Wu W, Yin F, Wang H, Tao C, Zhou H, Hu W. Palladium-Catalyzed Dual C-H Carbonylation of Diarylamines Leading to Diversified Acridones under CO-Free Conditions. J Org Chem 2024; 89:2014-2023. [PMID: 38241168 DOI: 10.1021/acs.joc.3c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
A Pd-catalyzed dual C-H carbonylation of commercially available diarylamines using Co2(CO)8 as a safe CO source has been developed. This methodology provides a facile approach for the synthesis of diversified acridones in moderate to good yields. The protocol features good functional group compatibility, operational safety, easy scale-up, and versatile transformations.
Collapse
Affiliation(s)
- Jiali Huang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Wenting Guo
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Wenting Wu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Fujun Yin
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Huiyan Wang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Chuanzhou Tao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Hualan Zhou
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Weiming Hu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| |
Collapse
|
3
|
Das A, Debnath S, Hota P, Das T, Maiti DK. K 2CO 3-Catalyzed Dual C-C-Coupled Cyclization to 3-Amino-4-benzoylbiphenyls and In Situ I 2-Catalyzed C-N Bond Forming Annulation: A Metal-Free Synthesis of Arylacridones. J Org Chem 2023; 88:12986-12996. [PMID: 37659070 DOI: 10.1021/acs.joc.3c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Unprecedented metal-free cyclization catalysis reactions are developed in a highly regioselective fashion to synthesize 3-amino-4-benzoyl biphenyls and arylacridones with high atom economy. Catalytic K2CO3 is utilized as the only reagent for the unusual rapid dual C-C-coupled cyclization between β-keto enamines and cinnamaldehydes to furnish the functionalized biphenyls. Its C(sp2)-H functionalized C-N bond-forming cyclization was performed in situ using molecular I2 as a catalyst to furnish valuable arylacridones. Plausible mechanisms for the new cyclization reactions are predicted by conducting various control experiments and ESI-MS analyses.
Collapse
Affiliation(s)
- Aranya Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sudipto Debnath
- Central Ayurveda Research Institute, CCRAS, Ministry of Ayush, Govt. of India, 4-CN Block, Bidhannagar, Sector-V, Kolkata 700091, India
| | - Poulami Hota
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Tuluma Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
4
|
Liu FC, Si MJ, Shi XR, Zhuang SY, Cai Q, Liu Y, Wu AX. Base-Controlled Synthesis of Fluorescent Acridone Derivatives via Formal (4 + 2) Cycloaddition. J Org Chem 2023. [PMID: 36780192 DOI: 10.1021/acs.joc.2c02977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
A transition-metal-free formal (4 + 2) cycloaddition for the direct assembly of acridone derivatives has been developed from simple and easily accessible o-aminobenzamides and 2-(trimethylsilyl)aryl triflates. The base played an important role in the selective controlled synthesis of N-H and N-aryl acridones. A preliminary study on the fluorescence properties of N-aryl acridones demonstrated that they could be used as fluorescent materials with a broad emission range.
Collapse
Affiliation(s)
- Fa-Chuang Liu
- Coal Conversion and New Carbon Materials Key Laboratory of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Meng-Jie Si
- Coal Conversion and New Carbon Materials Key Laboratory of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xin-Ru Shi
- Coal Conversion and New Carbon Materials Key Laboratory of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qun Cai
- Coal Conversion and New Carbon Materials Key Laboratory of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yi Liu
- Coal Conversion and New Carbon Materials Key Laboratory of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.,School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
5
|
Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, Hamid M, Khan KM, Khan NA, Rashid Y, Anwar A. Anti-amoebic effects of synthetic acridine-9(10H)-one against brain-eating amoebae. Acta Trop 2023; 239:106824. [PMID: 36610529 DOI: 10.1016/j.actatropica.2023.106824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Mehwish Manzoor
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sehrish Qureshi
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Muzna Mazhar
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Arj Fatima
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Sana Aurangzeb
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Mehwish Hamid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, University City, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Yasmeen Rashid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan.
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
6
|
Li Y, Xu L, Wei Y. Synthesis of acridines via copper-catalyzed amination/annulation cascades between arylboronic acids and anthranils. Org Biomol Chem 2022; 20:9742-9745. [PMID: 36441231 DOI: 10.1039/d2ob01705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Copper-catalyzed tandem cyclization reactions between arylboronic acids and anthranils have been established, providing new approaches for one-pot assembly of azacycle acridines. This one-pot protocol features simple operation, precious-metal-free conditions and good functional group compatibility, thus providing an efficient approach for the synthesis of a variety of acridines in moderate to good yields.
Collapse
Affiliation(s)
- Yuge Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
7
|
Gerbino DC, Steingruber HS, Mendioroz P, Castro MJ, Volpe MA. A Novel Palladium-Based Heterogeneous Catalyst for Tandem Annulation: A Strategy for Direct Synthesis of Acridones. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0042-1751371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractIn order to develop an efficient, rapid, and modular cascade strategy for the direct synthesis of acridones, palladium supported on sulfated alumina and microwave activation are employed. Multifunctional heterogeneous palladium catalysts were prepared in order to carry out the sequential annulation via a Buchwald–Hartwig amination followed by an intramolecular annulation in a one-pot process. This new protocol represents the first report on a catalytic tandem synthesis of acridone derivatives from commercially available starting materials, under ligand-free conditions. The scope of the present methodology is extended to the generation of a library of functionalized acridones, showing high functional group compatibility, in moderate to excellent yields. The applicability of this novel transformation was demonstrated by the concise total synthesis of the natural product arborinine.
Collapse
Affiliation(s)
- Darío C. Gerbino
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur
| | - H. Sebastián Steingruber
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur
| | - Pamela Mendioroz
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur
| | - M. Julia Castro
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur
| | | |
Collapse
|
8
|
M. Honnanayakanavar J, Owk O, Suresh S. Recent Advances in the Tandem Copper-Catalyzed Ullmann-Goldberg N-Arylation–Cyclization Strategies. Org Biomol Chem 2022; 20:2993-3028. [DOI: 10.1039/d2ob00082b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N‒Aryl bond formation under copper catalysis has been playing a pivotal role and has been extensively used as a key step in the total syntheses of several therapeutic molecules. The...
Collapse
|