1
|
Lathwal E, Kumar S, Sharma V, Sharma A, Choudhury T, Mistry T, Nasare VD. Design and Synthesis of Propargyloxy Functionalized Pyrazole-Based Aurones: Exploring Their Potent Anticancer Properties Against AGS and MCF-7 Cell Lines. Chem Biodivers 2024:e202402186. [PMID: 39641371 DOI: 10.1002/cbdv.202402186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
FDA-approved numerous commercial and natural drugs used in cancer treatment feature either pyrazole or alkyne moieties. On the basis of this, we designed and synthesized 20 novel propargyloxy-substituted pyrazole-based aurones (10a-j and 11a-j) and evaluated for their anticancer potential against cancerous MCF-7 and human gastric adenocarcinoma (AGS) cell lines, as well as normal cell line human embryonic kidney 293 (HEK-293), through MTT assay. Among these tested compounds, five (10d-f, 11e, and 11f) displayed potent cytotoxic properties for AGS cancer cell line with IC50 values ranging from 19.7 to 28.5 µM, better than the reference drugs leucovorin (IC50 = 30.8 µM) and oxaliplatin (IC50 = 29.8 µM). Furthermore, compounds 10b, 10c, 11a, 11c, and 11d demonstrated a significant cytotoxic potential against the MCF-7 cancer cell line with a single-digit micromolar IC50 potency (4.8-8.5 µM) compared to the standard drug paclitaxel (IC50 = 19.7 µM). The cytotoxic studies of above selected potent active hybrid compounds, against HEK-293, normal cell line, further highlight the potential use of 10c molecule (IC50 = 4.8 µM against MCF-7 cells) as an anticancer agent for breast cancer with a selectivity index of 2.597. The cytotoxic results were further supported by the molecular docking studies.
Collapse
Affiliation(s)
- Ekta Lathwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, Haryana, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Pt. Chiranji Lal Sharma Government College, Karnal, Haryana, India
| | - Arpana Sharma
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Trisha Choudhury
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Tanuma Mistry
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Vilas D Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Zhang Z, Ma X, Li Y, Ma N, Wang M, Liu W, Peng J, Liu Y, Li Y. Heterovalent Metal Pair Sites on Metal-Organic Framework Ordered Macropores for Multimolecular Co-Activation. J Am Chem Soc 2024; 146:8425-8434. [PMID: 38488481 DOI: 10.1021/jacs.3c14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The precise design of catalytic metal centers with multiple chemical states to facilitate sophisticated reactions involving multimolecular activation is highly desirable but challenging. Herein, we report an ordered macroporous catalyst with heterovalent metal pair (HMP) sites comprising CuII-CuI on the basis of a microporous metal-organic framework (MOF) system. This macroporous HMP catalyst with proximity heterovalent dual copper sites, whose distance is controlled to ∼2.6 Å, on macropore surface exhibits a co-activation behavior of ethanol at CuII and alkyne at CuI, and avoids microporous restriction, thereby promoting additive-free alkyne hydroboration reaction. The desired yield enhances dramatically compared with the pristine MOF and ordered macroporous MOF both with solely isovalent CuII-CuII sites. Density functional theory calculations reveal that the Cu-HMP sites can stabilize the Bpin-CuII-CuI-alkyne intermediate and facilitate C-B bond formation, resulting in a smooth alkyne hydroboration process. This work provides new perspectives to design multimolecular activation catalysts for sophisticated matter transformations.
Collapse
Affiliation(s)
- Zhong Zhang
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Xujiao Ma
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Yameng Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Nana Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ming Wang
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Wei Liu
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Jiahui Peng
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Yiwei Liu
- School of Chemistry, Dalian University of Technology Dalian 116024, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Sorbelli D, Belpassi L, Belanzoni P. Mechanistic Study of Alkyne Insertion into Cu-Al and Au-Al Bonds: A Paradigm Shift for Coinage Metal Chemistry. Inorg Chem 2022; 61:21095-21106. [PMID: 36493466 PMCID: PMC9795551 DOI: 10.1021/acs.inorgchem.2c03713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, the mechanism of the insertion reaction of 3-hexyne into Cu-Al and Au-Al bonds in M-aluminyl (M = Cu, Au) complexes is computationally elucidated. The mechanism is found to be radical-like, with the Cu-Al and Au-Al bonds acting as nucleophiles toward the alkyne, and predicts a less efficient reactivity for the gold-aluminyl complex. The proposed mechanism well rationalizes the kinetic (or thermodynamic) control on the formation of the syn (or anti) insertion product into the Cu-Al bond (i.e., dimetallated alkene) which has been recently reported. A comparative analysis of the electronic structure reveals that the reduced reactivity at the gold site─usually showing higher efficiency than copper as a "standard" electrophile in alkyne activation─arises from a common feature, i.e., the highly stable 6s Au orbital. The relativistic lowering of the 6s orbital, making it more suitable for accepting electron density and thus enhancing the electrophilicity of gold complexes, in the gold-aluminyl system is responsible for a less nucleophilic Au-Al bond and, consequently, a less efficient alkyne insertion. These findings demonstrate that the unconventional electronic structure and the electron-sharing nature of the M-Al bond induce a paradigm shift in the properties of coinage metal complexes. In particular, the peculiar radical-like reactivity, previously shown also with carbon dioxide, suggests that these complexes might efficiently insert/activate other small molecules, opening new and unexplored paths for their reactivity.
Collapse
Affiliation(s)
- Diego Sorbelli
- Department
of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto, 8-06123 Perugia, Italy,CNR
Institute of Chemical Science and Technologies ″Giulio Natta″
(CNR-SCITEC), Via Elce di Sotto, 8-06123 Perugia, Italy,
| | - Leonardo Belpassi
- CNR
Institute of Chemical Science and Technologies ″Giulio Natta″
(CNR-SCITEC), Via Elce di Sotto, 8-06123 Perugia, Italy,
| | - Paola Belanzoni
- Department
of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto, 8-06123 Perugia, Italy,CNR
Institute of Chemical Science and Technologies ″Giulio Natta″
(CNR-SCITEC), Via Elce di Sotto, 8-06123 Perugia, Italy,
| |
Collapse
|
4
|
Sennari G, Gardner KE, Wiesler S, Haider M, Eggert A, Sarpong R. Unified Total Syntheses of Benzenoid Cephalotane-Type Norditerpenoids: Cephanolides and Ceforalides. J Am Chem Soc 2022; 144:19173-19185. [PMID: 36198090 PMCID: PMC11620759 DOI: 10.1021/jacs.2c08803] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Detailed herein are our synthetic studies toward the preparation of the C18- and C19-benzenoid cephalotane-type norditerpenoids. Guided by chemical network analysis, the core structure of this natural product family was constructed in a concise manner using an iterative cross-coupling, followed by a formal inverse-electron-demand [4 + 2] cycloaddition. Initial efforts to functionalize an alkene group in the [4 + 2] cycloadduct using a Mukaiyama hydration and a subsequent olefination led to the complete C18-carbon framework. While effective, this approach proved lengthy and prompted the development of a direct alkene difunctionalization that relies on borocupration to advance the cycloadduct to the natural products. Late-stage peripheral C-H functionalization facilitated access to all of the known cephanolides in 6-10 steps as well as five recently isolated ceforalides in 8-13 steps.
Collapse
Affiliation(s)
- Goh Sennari
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Kristen E Gardner
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Stefan Wiesler
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Maximilian Haider
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Alina Eggert
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Zhao Y, Liu C, Lin LQH, Chan ASC, Koh MJ. Stereoselective Synthesis of Trisubstituted Alkenes by Nickel‐Catalyzed Benzylation and Alkene Isomerization. Angew Chem Int Ed Engl 2022; 61:e202202674. [DOI: 10.1002/anie.202202674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yunlong Zhao
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Chen‐Fei Liu
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
| | - Leroy Qi Hao Lin
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Ming Joo Koh
- Department of Chemistry National University of Singapore 4 Science Drive 2 Singapore 117544 Republic of Singapore
| |
Collapse
|
6
|
Corpas J, Arpa EM, Lapierre R, Corral I, Mauleón P, Arrayás RG, Carretero JC. Interplay between the Directing Group and Multifunctional Acetate Ligand in Pd-Catalyzed anti-Acetoxylation of Unsymmetrical Dialkyl-Substituted Alkynes. ACS Catal 2022; 12:6596-6605. [PMID: 35692253 PMCID: PMC9173690 DOI: 10.1021/acscatal.2c00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/07/2022] [Indexed: 12/31/2022]
Abstract
The cooperative action of the acetate ligand, the 2-pyridyl sulfonyl (SO2Py) directing group on the alkyne substrate, and the palladium catalyst has been shown to be crucial for controlling reactivity, regioselectivity, and stereoselectivity in the acetoxylation of unsymmetrical internal alkynes under mild reaction conditions. The corresponding alkenyl acetates were obtained in good yields with complete levels of β-regioselectivity and anti-acetoxypalladation stereocontrol. Experimental and computational analyses provide insight into the reasons behind this delicate interplay between the ligand, directing group, and the metal in the reaction mechanism. In fact, these studies unveil the multiple important roles of the acetate ligand in the coordination sphere at the Pd center: (i) it brings the acetic acid reagent into close proximity to the metal to allow the simultaneous activation of the alkyne and the acetic acid, (ii) it serves as an inner-sphere base while enhancing the nucleophilicity of the acid, and (iii) it acts as an intramolecular acid to facilitate protodemetalation and regeneration of the catalyst. Further insight into the origin of the observed regiocontrol is provided by the mapping of potential energy profiles and distortion-interaction analysis.
Collapse
Affiliation(s)
- Javier Corpas
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Enrique M. Arpa
- Division
of Theoretical Chemistry, IFM, Linköping
University, 581 83 Linköping, Sweden
| | - Romain Lapierre
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Inés Corral
- Departamento
de Química, Facultad de Ciencias,
UAM, Cantoblanco, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Pablo Mauleón
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Ramón Gómez Arrayás
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Juan C. Carretero
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| |
Collapse
|
7
|
Zhao Y, Liu CF, Lin LQH, Chan ASC, Koh MJ. Stereoselective Synthesis of Trisubstituted Alkenes by Nickel‐Catalyzed Benzylation and Alkene Isomerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunlong Zhao
- National University of Singapore Chemistry SINGAPORE
| | - Chen-Fei Liu
- National University of Singapore Chemistry SINGAPORE
| | | | | | - Ming Joo Koh
- National University of Singapore Chemistry S9-14-01D, 4 Science Drive 2 117544 Singapore SINGAPORE
| |
Collapse
|