1
|
Palio L, Bru F, Ruggiero T, Bourda L, Van Hecke K, Cazin C, Nolan SP. The role of the stabilizing/leaving group in palladium catalysed cross-coupling reactions. Dalton Trans 2024; 53:18013-18020. [PMID: 39440538 DOI: 10.1039/d4dt02533d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Despite the widespread use of well-defined PdII complexes as pre-catalysts for cross-coupling processes, the role of the throw-away ligand is still underexplored. In this work we focused on the complexes of the type [Pd(NHC)(η3-R-allyl)Cl] (NHC = N-heterocyclic carbene) and we investigated the influence of the R substitution on the allyl moiety. Starting from the already described [Pd(IPr)(η3-cinnamyl)Cl] and [Pd(IPr*)(η3-cinnamyl)Cl] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, IPr* = N,N'-1,3-bis[2,6-bis(diphenylmethyl)-4-methylphenyl]imidazol-2-ylidene) we prepared eight new complexes bearing new substitutions on the cinnamyl motif and we tested them in the C-N bond formation to evaluate the effect of the throw-away ligand modification in the catalytic activity. In addition, we studied the undesired formation of the less active off-cycle [PdI2(NHC)2(η3-R-allyl)(μ-Cl)] dimers from the corresponding PdII complexes to evaluate the role of the new throw-away ligands on the inhibition of this process.
Collapse
Affiliation(s)
- Lorenzo Palio
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS Unité de Catalyse et Chimie Solide, F-59000, Lille, France
| | - Francis Bru
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Tommaso Ruggiero
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Laurens Bourda
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Catherine Cazin
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry, Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium
| |
Collapse
|
2
|
Adhikari B, Raju S, Awoyemi RF, Donnadieu B, Wipf DO, Stokes SL, Emerson JP. Synthesis and Characterization of Symmetrical N-Heterocyclic Carbene Copper(II) Complexes-An Investigation of the Influence of Pyridinyl Substituents. Molecules 2024; 29:3542. [PMID: 39124947 PMCID: PMC11314359 DOI: 10.3390/molecules29153542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Three new tridentate copper(II) N-heterocyclic carbene (NHC) complexes have been obtained and characterized with symmetrical C-4 substitutions on their pendent pyridine rings. Substitutions including methyl (Me), methoxy (OMe), and chloro (Cl) groups, which extend the library pincer Cu-NHC complexes under investigation, modify the impact of pyridinyl basicity on NCN pincer complexes. Both ligand precursors and copper(II) complexes are characterized using a range of techniques, including nuclear magnetic resonance (NMR) spectroscopy for 1H, 13C, 31P, and 19F nuclei, electrospray ionization mass spectrometry (ESI-MS), X-ray crystallography, cyclic voltammetry, and UV-Vis spectroscopy. The pyridine substitutions lead to minimal changes to bond lengths and angles in the X-ray crystal structures of these related complexes; there is a pronounced impact on the electrochemical behavior of both the ligand precursors and copper complexes in the solution. The substitution in the pyridinyl units of these complexes show an impact on the catalytic reactivity of these complexes as applied to a model C-N bond-forming reaction (CEL cross-coupling) under well-established conditions; however, this observation does not correlate to the expected change in basicity in these ligands.
Collapse
Affiliation(s)
| | | | | | | | | | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
3
|
Peng J, He Q, Wen J, Zhang Y, Wang Y, Ye Y, Shen Y. N-Indole-Substituted Imidazolylidene Pd-PEPPSI Precatalysts: Enhanced Performance with a 3,5-Diisopropyl-4-indolyl Moiety. J Org Chem 2024; 89:9322-9335. [PMID: 38905015 DOI: 10.1021/acs.joc.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Pd-PEPPSI complexes of N-(4-indolyl)-N'-phenylimidazol-2-ylidene (IIn) ligands with a 5-isopropyl-4-indolyl moiety are synthesized and evaluated in heteroarene C-H arylation, Suzuki-Miyaura cross-coupling, and Buchwald-Hartwig amination reactions. The IIn-Pd complex bearing a 3,5-diisopropyl-4-indolyl substituent (C5) exhibits the best catalytic activity in this series and substantially outperforms commercial precatalyst PEPPSI-Pd-IPr. The results also suggest that the alkyl group at position 3 of the 4-indolyl moiety shows stronger impacts than that at position 5.
Collapse
Affiliation(s)
- Jiahao Peng
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi He
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiarui Wen
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yin Zhang
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yazhou Wang
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingxin Ye
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuehai Shen
- Centre for Pharmaceutical Sciences and Engineering, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Li Z, Rong D, Yuan L, Zhao Z, Dai F, Chen L, Xie Y. Trace amounts of palladium catalysed the Suzuki-Miyaura reaction of deactivated and hindered aryl chlorides. Org Biomol Chem 2024; 22:4559-4567. [PMID: 38769903 DOI: 10.1039/d4ob00623b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Electron-rich and hindered aryl chlorides are the most challenging substrates in Suzuki-Miyaura cross-coupling (SMC) reactions. Herein, we report a highly efficient catalytic system for the SMC reaction using trace amounts of commercially available catalysts [Pd(PPh3)4/(t-Bu)PCy2; Pd loading as low as 9.5 × 10-5 mol%]. This catalytic system can efficiently couple deactivated and sterically hindered aryl chlorides with various substituted phenylboronic acids, even in one-pot multiple coupling reactions (yield of products up to 92%). The impact of solvents on SMC reactions and the mechanisms of by-product formation in aryl boronic acid couplings are analyzed using density functional theory (DFT). Utilizing trace amounts of commercially available catalysts avoids complex synthesis, reduces costs, and minimizes metal residues.
Collapse
Affiliation(s)
- Zhenhua Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China
| | - Dayou Rong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
| | - Longfeng Yuan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
| | - Zhihong Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
| | - Fenghao Dai
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
| | - Lijun Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China
| |
Collapse
|
5
|
Umabharathi SB, Neetha M, Anilkumar G. Palladium N-Heterocyclic Carbene-Catalyzed Aminations: An Outline. Top Curr Chem (Cham) 2024; 382:3. [PMID: 38265533 DOI: 10.1007/s41061-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Amination reactions play a pivotal role in synthetic organic chemistry, facilitating the generation of nitrogen-containing scaffolds with broad applications in drug synthesis, material production, polymer formation, and the generation of amino acids and peptides. Amination offers the potential to fine tune the properties of natural products and produce functional materials for various applications. Palladium N-heterocyclic carbene (Pd-NHC) emerges as an innovative and highly effective catalyst in this context. Under favorable reaction conditions, this robust and simple catalyst efficiently facilitates the synthesis of a diverse range of compounds with varying complexity and utility. Pd-NHC complexes exhibit significant σ-electron donating potential, enhancing the ease of the oxidative addition process in their mechanistic pathway. Their steric topography further contributes to a rapid reductive elimination. These complexes demonstrate remarkable stability, a result of the strong Pd-ligand bond. The wide variety of Pd-NHC complexes has proven highly efficient in catalyzing reactions across a spectrum of complexities, from simple to intricate. The domain of aminations catalyzed by Pd-NHC has undergone significant diversification, presenting new opportunities, particularly in the realms of material chemistry and natural product synthesis. This review outlines the advancements in Pd-NHC-catalyzed amination reactions, covering literature up to date.
Collapse
Affiliation(s)
- S B Umabharathi
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P. O., Kollam, Kerala, 690525, India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam, Kerala, 686560, India.
- Institute for Integrated Programs and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam, Kerala, 686560, India.
- Advanced Molecular Materials Research Center (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P. O., Kottayam, Kerala, 686560, India.
| |
Collapse
|
6
|
Zhang W, Smillovich J, Albert V. Palladium Catalyzed Amidation of Phenyl Carboxylates and Anilines Using Aqueous Micellar Catalysis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Düşünceli SD, Şahan MH, Kaloğlu M, Üstün E, Özdemir İ. Applications of quinoxaline‐bridged bis(benzimidazolium) salts as ligand sources for the palladium‐catalyzed Suzuki and Heck cross‐coupling reactions in an aqueous medium. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Serpil Demir Düşünceli
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
- Catalysis Research and Application Center İnönü University Malatya Turkey
- Drug Application and Research Center İnönü University Malatya Turkey
| | - Mehmet Hanifi Şahan
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
| | - Murat Kaloğlu
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
- Catalysis Research and Application Center İnönü University Malatya Turkey
- Drug Application and Research Center İnönü University Malatya Turkey
| | - Elvan Üstün
- Faculty of Science and Art, Department of Chemistry Ordu University Ordu Turkey
| | - İsmail Özdemir
- Faculty of Science and Arts, Department of Chemistry İnönü University Malatya Turkey
- Catalysis Research and Application Center İnönü University Malatya Turkey
- Drug Application and Research Center İnönü University Malatya Turkey
| |
Collapse
|