1
|
Westarp S, Benckendorff CMM, Motter J, Röhrs V, Sanghvi YS, Neubauer P, Kurreck J, Kurreck A, Miller GJ. Biocatalytic Nucleobase Diversification of 4'-Thionucleosides and Application of Derived 5-Ethynyl-4'-thiouridine for RNA Synthesis Detection. Angew Chem Int Ed Engl 2024; 63:e202405040. [PMID: 38785103 DOI: 10.1002/anie.202405040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Nucleoside and nucleotide analogues have proven to be transformative in the treatment of viral infections and cancer. One branch of structural modification to deliver new nucleoside analogue classes explores replacement of canonical ribose oxygen with a sulfur atom. Whilst biological activity of such analogues has been shown in some cases, widespread exploration of this compound class is hitherto hampered by the lack of a straightforward and universal nucleobase diversification strategy. Herein, we present a synergistic platform enabling both biocatalytic nucleobase diversification from 4'-thiouridine in a one-pot process, and chemical functionalization to access new entities. This methodology delivers entry across pyrimidine and purine 4'-thionucleosides, paving a way for wider synthetic and biological exploration. We exemplify our approach by enzymatic synthesis of 5-iodo-4'-thiouridine on multi-milligram scale and from here switch to complete chemical synthesis of a novel nucleoside analogue probe, 5-ethynyl-4'-thiouridine. Finally, we demonstrate the utility of this probe to monitor RNA synthesis in proliferating HeLa cells, validating its capability as a new metabolic RNA labelling tool.
Collapse
Affiliation(s)
- Sarah Westarp
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, D-13355, Berlin, Germany
| | - Caecilie M M Benckendorff
- Centre for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Jonas Motter
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
| | - Viola Röhrs
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, TIB 4/3-2, D-13355, Berlin, Germany
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California, 92024, USA
| | - Peter Neubauer
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, TIB 4/3-2, D-13355, Berlin, Germany
| | - Anke Kurreck
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76 ACK24, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, D-13355, Berlin, Germany
| | - Gavin J Miller
- Centre for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
2
|
Motter J, Benckendorff CMM, Westarp S, Sunde-Brown P, Neubauer P, Kurreck A, Miller GJ. Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology. Nat Prod Rep 2024; 41:873-884. [PMID: 38197414 PMCID: PMC11188666 DOI: 10.1039/d3np00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 01/11/2024]
Abstract
Covering: 2019 to 2023Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.
Collapse
Affiliation(s)
- Jonas Motter
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
| | - Caecilie M M Benckendorff
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| | - Peter Sunde-Brown
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
3
|
Wei T, Xie MS, Guo HM. Construction of thioglycoside bonds via an asymmetric organocatalyzed sulfa-Michael/aldol reaction: access to 4'-thionucleosides. Chem Commun (Camb) 2024; 60:5018-5021. [PMID: 38639063 DOI: 10.1039/d4cc00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Thioglycoside bond formation via an asymmetric sulfa-Michael/aldol reaction of (E)-β-nucleobase acrylketones and 1,4-dithiane-2,5-diol has been achieved with a cinchona alkaloid-derived bifunctional squaramide chiral catalyst. Diverse purine, benzimidazole, and imidazole substrates are well tolerated and generate 4'-thionucleoside derivatives containing three contiguous stereogenic centers with excellent results (30 examples, up to 97% yield, >20 : 1 dr and up to 99% ee). Moreover, the novel strategy provides an efficient and convenient synthetic route to construct chiral 4'-thionucleosides.
Collapse
Affiliation(s)
- Tao Wei
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Ming-Sheng Xie
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hai-Ming Guo
- School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
4
|
Liu ZQ. Is it still worth renewing nucleoside anticancer drugs nowadays? Eur J Med Chem 2024; 264:115987. [PMID: 38056297 DOI: 10.1016/j.ejmech.2023.115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Nucleoside has situated the convergence point in the discovery of novel drugs for decades, and a large number of nucleoside derivatives have been constructed for screening novel pharmacological properties at various experimental platforms. Notably, nearly 20 nucleosides are approved to be used in the clinic treatment of various cancers. Nevertheless, the blossom of synthetic nucleoside analogs in comparison with the scarcity of nucleoside anticancer drugs leads to a question: Is it still worth insisting on the screening of novel anticancer drugs from nucleoside derivatives? Hence, this review attempts to emphasize the importance of nucleoside analogs in the discovery of novel anticancer drugs. Firstly, we introduce the metabolic procedures of nucleoside anticancer drug (such as 5-fluorouracil) and summarize the designing of novel nucleoside anticancer candidates based on clinically used nucleoside anticancer drugs (such as gemcitabine). Furthermore, we collect anticancer properties of some recently synthesized nucleoside analogs, aiming at emphasizing the availability of nucleoside analogs in the discovery of anticancer drugs. Finally, a variety of synthetic strategies including the linkage of sugar moiety with nucleobase scaffold, modifications on the sugar moiety, and variations on the nucleobase structure are collected to exhibit the abundant protocols in the achievement of nucleoside analogs. Taken the above discussions collectively, nucleoside still advantages for the finding of novel anticancer drugs because of the clearly metabolic procedures, successfully clinic applications, and abundantly synthetic routines.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
5
|
Benckendorff CMM, Sanghvi YS, Miller GJ. Preparation of a 4'-Thiouridine Building-Block for Solid-Phase Oligonucleotide Synthesis. Curr Protoc 2023; 3:e878. [PMID: 37747330 PMCID: PMC10946921 DOI: 10.1002/cpz1.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Starting from a commercially available thioether, we report a nine-step synthesis of a 4'-thiouridine phosphoramidite building-block. We install the uracil nucleobase using Pummerer-type glycosylation of a sulfoxide intermediate followed by a series of protecting group manipulations to deliver the desired phosphite. Notably, we introduce a 3',5'-O-di-tert-butylsilylene protecting group within a 4'-thiosugar framework, harnessing this to ensure regiospecific installation of the 2'-O-silyl protecting group. We envisage this methodology will be generally applicable to other 4'-thionucleosides and duly support the exploration of their inclusion within related nucleic acid syntheses. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: (2R,3S,4R)-2,3-O-Isopopropylidene-5-O-tert-butyldiphenylsilyl-1-(4-sulfinyl)cyclopentane: Sulfoxidation Basic Protocol 2: 2',3'-O-Isopropylidene-5'-O-tert-butyldiphenylsilyl-4'-thiouridine: Pummerer glycosylation Basic Protocol 3: 4'-Thiouridine: Deprotection Basic Protocol 4: 2'-O-tert-Butyldimethylsilyl-3',5'-di-tert-butylsiloxy-4'-thiouridine: 2',3',5'-O-silylation Basic Protocol 5: 2'-O-tert-Butyldimethylsilyl-4'-thiouridine: Selective 3'-5'-desilylation Basic Protocol 6: 2'-O-tert-Butyldimethylsilyl-5'-O-dimethoxytrityl-4'-thiouridine: 5'-O-dimethoxytritylation Basic Protocol 7: 2'-O-tert-butyldimethylsilyl-3'-O-[(2-cyanoethoxy)(N,N-diisopropylamino)phosphino]-5'-O-dimethoxytrityl-4'-thiouridine: 3'-O-phosphitylation.
Collapse
Affiliation(s)
- Caecilie M. M. Benckendorff
- Centre for GlycoscienceKeele UniversityKeeleStaffordshireUnited Kingdom
- Lennard‐Jones Laboratory, School of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireUnited Kingdom
| | | | - Gavin J. Miller
- Centre for GlycoscienceKeele UniversityKeeleStaffordshireUnited Kingdom
- Lennard‐Jones Laboratory, School of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireUnited Kingdom
| |
Collapse
|
6
|
Liang Y, Smerznak E, Wnuk SF. Construction of quaternary stereocenters at carbon 2' of nucleosides. Carbohydr Res 2023; 528:108814. [PMID: 37087776 DOI: 10.1016/j.carres.2023.108814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
The non-natural nucleosides with a quaternary stereogenic center at C2' are crucial to drug discovery. They have become a cornerstone for the treatment of cancer and various viral infections as exemplified by gemcitabine and sofosbuvir. Major research effort has been expended to gain synthetic access to these nucleoside analogues with a significant steric bulk at C2' in the furanoside ring. The 2'-ketonucleosides and 2'-deoxy-2'-methylenenucleosides emerged as key intermediates in these synthetic strategies. For example, α-face addition of methyl lithium to the 2'-ketonucleosides followed by fluorination of resulting tertiary arabino alcohol with DAST provided 2'-fluoro-2'-C-methyluridine - a core nucleoside component of sofosbuvir. The α-face addition of HCN or HN3 to the 2'-deoxy-2'-methylene nucleosides gave access to the synthetically versatile 2'-cyano-2'-C-methyl and 2'-azido-2'-C-methyl nucleosides. Likewise, the addition of diazomethane to the 2'-exomethylene group gave access to the 2'-spirocyclopropyl analogue. This review primarily discusses synthetic strategies which employs natural nucleosides as substrates but selected approaches involving coupling of the preelaborated sugar precursors with nucleobases are also examined.
Collapse
Affiliation(s)
- Yong Liang
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, United States
| | - Ellie Smerznak
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, United States.
| |
Collapse
|
7
|
Benckendorff CMM, Slyusarchuk VD, Huang N, Lima MA, Smith M, Miller GJ. Synthesis of fluorinated carbocyclic pyrimidine nucleoside analogues. Org Biomol Chem 2022; 20:9469-9489. [PMID: 36408761 DOI: 10.1039/d2ob01761j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Analogues of the canonical nucleosides have a longstanding presence and proven capability within medicinal chemistry and drug discovery research. The synthesis reported herein successfully replaces furanose oxygen with CF2 and CHF in pyrimidine nucleosides, granting access to an alternative pharmacophore space. Key diastereoselective conjugate addition and fluorination methodologies are developed from chiral pool materials, establishing a robust gram-scale synthesis of 6'-(R)-monofluoro- and 6'-gem-difluorouridines. Vital intermediate stereochemistries are confirmed using X-ray crystallography and NMR analysis, providing an indicative conformational preference for these fluorinated carbanucleosides. Utilising these 6'-fluorocarbauridine scaffolds enables synthesis of related cytidine, ProTide and 2'-deoxy analogues alongside a preliminary exploration of their biological capabilities in cancer cell viability assays. This synthetic blueprint offers potential to explore fluorocarbanucleoside scaffolds, indicatively towards triphosphate analogues and as building blocks for oligonucleotide synthesis.
Collapse
Affiliation(s)
- Caecilie M M Benckendorff
- Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK. .,Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Valentyna D Slyusarchuk
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Ningwu Huang
- Riboscience LLC, 428 Oakmead Pkwy, Sunnyvale, CA 94085, USA
| | - Marcelo A Lima
- Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Mark Smith
- Riboscience LLC, 428 Oakmead Pkwy, Sunnyvale, CA 94085, USA
| | - Gavin J Miller
- Centre for Glycosciences, Keele University, Keele, Staffordshire, ST5 5BG, UK. .,Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|