1
|
Deng Z, Sun Y, Chen A. Light-Triggered Reversible Swelling of Azobenzene-Containing Block Copolymer Worms via Confined Deformation Prepared by Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2024; 45:e2400372. [PMID: 38885423 DOI: 10.1002/marc.202400372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Stimuli-responsive block copolymer nanoparticles (NPs) have received close attention in recent years owing to their tremendous application potential in smart materials. Azobenzene-containing NPs are widely studied due to the advantages of light as a stimulus and fast reversible trans-cis isomerization of azobenzene chromophores. However, the inefficient preparation process and difficult reversible transformation of morphologies limit their development. Herein it is demonstrated that the light-triggered reversible swelling behavior of wormlike NPs with high azobenzene content could be realized via confined deformation. These worms are prepared in large quantities via polymerization-induced self-assembly based on the copolymerization of 11-(4-(4-butylphenylazo)phenoxy)undecyl methacrylate (MAAz) and N-(methacryloxy)succinimide (NMAS) monomers. Upon UV/visible light irradiation, the reversible deformation of worms is achieved when the feed molar ratio of NMAS/MAAz is relatively high or via crosslinking using diamines, which leads to the reduction of the photoisomerization efficiency. The diameter variation of the worms is influenced by the amount and types of crosslinkers. Moreover, the scalability of this strategy is further proved by the fabrication of photo- and reductant-responsive crosslinked worms. It is expected that this study not only provides a new route to affording reversible photoresponsive NPs but also offers a unique insight into the reversible photodeformation mechanism of azobenzene-containing NPs.
Collapse
Affiliation(s)
- Zichao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yalan Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
2
|
Wang X, Yu Z, Huang Z, Zhou N, Cheng X, Zhang Z, Zhang W, Zhu X. Unraveling Dynamic Helicity Inversion and Chirality Transfer through the Synthesis of Discrete Azobenzene Oligomers by an Iterative Exponential Growth Strategy. Angew Chem Int Ed Engl 2023:e202315686. [PMID: 38085492 DOI: 10.1002/anie.202315686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 12/23/2023]
Abstract
Unraveling the chirality transfer mechanism of polymer assemblies and controlling their handedness is beneficial for exploring the origin of hierarchical chirality and developing smart materials with desired chiroptical activities. However, polydisperse polymers often lead to an ambiguous or statistical evaluation of the structure-property relationship, and it remains unclear how the iterative number of repeating units function in the helicity inversion of polymer assemblies. Herein, we report the macroscopic helicity and dynamic manipulation of the chiroptical activity of supramolecular assemblies from discrete azobenzene-containing oligomers (azooligomers), together with the helicity inversion and morphological transition achieved solely by changing the iterative chain lengths. The corresponding assemblies also differ from their polydisperse counterparts in terms of thermodynamic properties, chiroptical activities, and morphological control.
Collapse
Affiliation(s)
- Xiao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Ye L, Liu M, Wang X, Yu Z, Huang Z, Zhou N, Zhang Z, Zhu X. Sequence effect on the self-assembly of discrete amphiphilic co-oligomers with fluorene-azobenzene semirigid backbones. RSC Adv 2023; 13:24181-24190. [PMID: 37575403 PMCID: PMC10416705 DOI: 10.1039/d3ra04205g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Sequences can have a dramatic impact on the unique properties and self-assembly in natural macromolecules, which has received increasing interest. Herein, we report a series of discrete amphiphilic co-oligomers with the same composition but different building blocks in a semirigid backbone. These sequence-defined oligomers possess two primary amine groups on the side chain of the azobenzene building block, and hence, they become amphipathic due to quaternization of the amine groups when protonated in acidic aqueous solution. These oligomer isomers assembled into different nanoparticles, including nanofibers, hollow vesicles and spherical micellar complexes, in a THF/water/HCl mixture under the same conditions. UV-vis absorption spectra, differential scanning calorimetry (DSC) and X-ray scattering (XRD) experiments combined with theoretical calculations reveal that the sequence-controlled co-oligomers induce different molecular packing conformations and arrangement modes of building blocks in self-assembly. Furthermore, these self-assembled nanoparticles demonstrate photoresponsive morphological transformation and fluorescence emission under UV light irradiation due to trans-to-cis photoisomerization of azobenzene. This work demonstrates that customizing functional nanoparticles can be achieved by controlling the sequence structure in synthetic co-oligomers.
Collapse
Affiliation(s)
- Liandong Ye
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Min Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiao Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihong Yu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhihao Huang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Nianchen Zhou
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
4
|
Kansız S, Elçin YM. Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Adv Colloid Interface Sci 2023; 317:102930. [PMID: 37290380 DOI: 10.1016/j.cis.2023.102930] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Liposomes and polymersomes are colloidal vesicles that are self-assembled from lipids and amphiphilic polymers, respectively. Because of their ability to encapsulate both hydrophilic and hydrophobic therapeutics, they are of great interest in drug delivery research. Today, the applications of liposomes and polymersomes have expanded to a wide variety of complex therapeutic molecules, including nucleic acids, proteins and enzymes. Thanks to their chemical versatility, they can be tailored to different drug delivery applications to achieve maximum therapeutic index. This review article evaluates liposomes and polymersomes from a perspective that takes into account the physical and biological barriers that reduce the efficiency of the drug delivery process. In this context, the design approaches of liposomes and polymersomes are discussed with representative examples in terms of their physicochemical properties (size, shape, charge, mechanical), targeting strategies (passive and active) and response to different stimuli (pH, redox, enzyme, temperature, light, magnetic field, ultrasound). Finally, the challenges limiting the transition from laboratory to practice, recent clinical developments, and future perspectives are addressed.
Collapse
Affiliation(s)
- Seyithan Kansız
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey; Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
5
|
Izuagbe AE, Truong VX, Tuten BT, Roesky PW, Barner-Kowollik C. Visible Light Switchable Single-Chain Nanoparticles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aidan E. Izuagbe
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland4000, Australia
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131Karlsruhe, Germany
| | - Vinh X. Truong
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland4000, Australia
| | - Bryan T. Tuten
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland4000, Australia
| | - Peter W. Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Zhang Y, Yuan J, Zhao X, Wu L, Liu Z, Song XM. The photoinduced back-and-forth deformation behavior of poly(arylene ether)s containing bis-azobenzene groups in the main chain. Polym Chem 2022. [DOI: 10.1039/d1py01542g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel series of poly(arylene ether)s containing various bis-azobenzene groups in the main chain were synthesized and showed photoinduced back-and-forth deformation behavior.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jianhang Yuan
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xue Zhao
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Le Wu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Zhen Liu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
7
|
Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021; 20:749-767. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amphiphilic polymers can self-assemble to form nanoparticles with different structures under suitable conditions. Polymer nanoparticles functionalized with aromatic azo groups are endowed with photo-responsive properties. In recent years, a variety of photoresponsive polymers and nanoparticles have been developed based on azobenzene, using different molecular design strategies and synthetic routes. This article reviews the progress of this rapidly developing research field, focusing on the structure, synthesis, assembly and response of photo-responsive polymer assemblies. According to the molecular structure, photo-responsive polymers can be divided into linear polymers containing azobenzene in a side chain, linear polymers containing azobenzene in the main chain, linear polymers containing azobenzene in an end group, branched polymers containing azobenzene and supramolecular polymers containing azobenzene. These systems have broad biomedical application prospects in the field of drug delivery and imaging applications.
Collapse
Affiliation(s)
- Mingxin Zheng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Ren K, Blosser MC, Malmstadt N. Light-Triggered Unique Shape Transformation of Giant Polymersomes with Tubular Protrusions. Macromol Rapid Commun 2021; 42:e2100474. [PMID: 34553805 DOI: 10.1002/marc.202100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/04/2021] [Indexed: 11/10/2022]
Abstract
Light-triggered unique shape transformation of calcein-loaded giant polymersomes with tubular protrusions, which serve as a reservoir membrane area during the shape transformation, is reported here. Under irradiation at the excitation wavelength of calcein, the tubular protrusions form strings of budded vesicles and then reintegrate into the mother vesicle. The initial giant polymersomes transform to two connected spherical vesicles via two pathways to alleviate the osmotic pressure imbalance across the vesicle membrane. The two connected spherical vesicles further transform to a mother vesicle with an inner daughter vesicle after switching off the light to relieve the bending energy. The finding provides a promising platform to mimic cell morphology changes.
Collapse
Affiliation(s)
- Kaixuan Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, CA, 90089-1211, USA
| | - Matthew C Blosser
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, CA, 90089-1211, USA
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, CA, 90089-1211, USA.,Department of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, CA, 90089-0744, USA.,Department of Biomedical Engineering, University of Southern California, 3650 McClintock Avenue, Los Angeles, CA, 90089-1111, USA
| |
Collapse
|
9
|
Wang V, Kim J, Kim J, Lee SW, Kim KT. On-demand shape transformation of polymer vesicles via site-specific isomerization of hydrazone photoswitches in monodisperse hydrophobic oligomers. Polym Chem 2021. [DOI: 10.1039/d1py00981h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stimuli-responsive polymersomes exhibited reversible shape transformation upon irradiation with UV or visible light due to the E–Z isomerization of the hydrazone-based photoswitch resulting in a conformational change of the OPLA block.
Collapse
Affiliation(s)
- Valene Wang
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jiwon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Junyoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seul Woo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|