1
|
Malik P, Yadav M, Bhushan R. Design, Synthesis and Application of 1,4-disubstituted 1,2,3-triazole Based Chemosensors: A Promising Avenue. CHEM REC 2024:e202400195. [PMID: 39715732 DOI: 10.1002/tcr.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/07/2024] [Indexed: 12/25/2024]
Abstract
The 1,2,3-triazole-based chemosensors, synthesized through Cu(I)-catalyzed azide-alkyne cycloaddition via 'click chemistry', offer a straightforward yet highly effective method for detecting metal cations and anions with remarkable accuracy, selectivity and sensitivity, making them invaluable across various fields such as chemistry, pharmacology, environmental science and biology. The selective recognition of these ions is crucial due to their significant roles in biological and physiological processes, where even slight concentration variations can have major consequences. The article reviews literature from 2017 to 2024, highlighting advancements in the synthesis of 1,2,3-triazole-based ligands and their application (along with sensing mechanism) for detection of various ions causing health and environmental hazards. The detection aspects have been discussed sequentially for the transition-, inner transition-, and the metals from the s or p block of the periodic table.
Collapse
Affiliation(s)
- Poonam Malik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Mona Yadav
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Ravi Bhushan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
2
|
Kaur M, Bharti D, Kumar V, Verma PK, Kumar R. Decarboxylative click cycloaddition: an emerging strategy towards substituted 1,2,3-triazole derivatives. Mol Divers 2024:10.1007/s11030-024-11014-4. [PMID: 39522072 DOI: 10.1007/s11030-024-11014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
1,2,3-triazole is a vital structural motif of various drugs and therapeutic leads, as well as a linker for bioconjugation and molecular recognition. Cu-catalysed click cycloaddition of azides with terminal alkynes (CuAAc) is an important reaction to construct the triazole core. In recent years, various decarboxylative click strategies utilizing alkynoic acids as stable surrogates for low boiling or gaseous alkynes have been developed. For instance, propiolic acid, which is easy to transport, is a safe alternative for flammable gaseous acetylene. In this review article, we have covered the recent development in the decarboxylative click cycloaddition of alkynoic acids with azides leading to the synthesis of diversely substituted triazoles, including monosubstituted, 1,4-disubstituted and fully substituted 1,2,3-triazoles. Various aspects such as mechanistic insights and optimization conditions/role of catalyst are highlighted.
Collapse
Affiliation(s)
- Manpreet Kaur
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Central University of Punjab, Bathinda, 151401, India
| | - Divya Bharti
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Central University of Punjab, Bathinda, 151401, India
| | - Vinod Kumar
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Central University of Punjab, Bathinda, 151401, India
| | - Praveen Kumar Verma
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Rakesh Kumar
- Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
3
|
Lin JX, Chen YX, Chien MC, Chen HJ, Lai CH, Liang CF. In Situ-Generated Formamidine as a Carbon/Nitrogen Source for Enaminone Formation: One-Pot Synthesis of Functionalized 4-Acyl-1,2,3-triazoles. J Org Chem 2024; 89:12170-12175. [PMID: 39155458 PMCID: PMC11382154 DOI: 10.1021/acs.joc.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
N,N-Dimethylformamide was reacted with hexamethyldisilazane to generate an N,N-dimethylformimidamide intermediate; thereafter, a reaction with acetophenones/β-diketones was induced to form enaminones. The one-pot synthetic protocol described in this paper can be applied to synthesize 1,4-disubstituted 1,2,3-triazoles and 1,4,5-trisubstituted 1,2,3-triazoles, in which organic azides are used as substrates under optimized conditions. Furthermore, this protocol uses readily available materials, is nearly free of solvent, can be applied to gram-scale operations, and leads to the formation of structurally diverse products with favorable yields.
Collapse
Affiliation(s)
- Jia-Xin Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - You-Xin Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Cheng Chien
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Jou Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
4
|
Jiang LF, Wu SH, Jiang YX, Ma HX, He JJ, Bi YB, Kong DY, Cheng YF, Cheng X, Deng QH. Enantioselective copper-catalyzed azidation/click cascade reaction for access to chiral 1,2,3-triazoles. Nat Commun 2024; 15:4919. [PMID: 38858346 PMCID: PMC11164697 DOI: 10.1038/s41467-024-49313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Chiral 1,2,3-triazoles are highly attractive motifs in various fields. However, achieving catalytic asymmetric click reactions of azides and alkynes for chiral triazole synthesis remains a significant challenge, mainly due to the limited catalytic systems and substrate scope. Herein, we report an enantioselective azidation/click cascade reaction of N-propargyl-β-ketoamides with a readily available and potent azido transfer reagent via copper catalysis, which affords a variety of chiral 1,2,3-triazoles with up to 99% yield and 95% ee under mild conditions. Notably, chiral 1,5-disubstituted triazoles that have not been accessed by previous asymmetric click reactions are also prepared with good functional group tolerance.
Collapse
Affiliation(s)
- Ling-Feng Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Shao-Hua Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yu-Xuan Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Hong-Xiang Ma
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Jia-Jun He
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yang-Bo Bi
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - De-Yi Kong
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yi-Fei Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Xuan Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Qing-Hai Deng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China.
| |
Collapse
|
5
|
Szatko M, Forysiak W, Kozub S, Andruniów T, Szweda R. Revealing the Effect of Stereocontrol on Intermolecular Interactions between Abiotic, Sequence-Defined Polyurethanes and a Ligand. ACS Biomater Sci Eng 2024; 10:3727-3738. [PMID: 38804015 PMCID: PMC11167595 DOI: 10.1021/acsbiomaterials.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
The development of precision polymer synthesis has facilitated access to a diverse library of abiotic structures wherein chiral monomers are positioned at specific locations within macromolecular chains. These structures are anticipated to exhibit folding characteristics similar to those of biotic macromolecules and possess comparable functionalities. However, the extensive sequence space and numerous variables make selecting a sequence with the desired function challenging. Therefore, revealing sequence-function dependencies and developing practical tools are necessary to analyze their conformations and molecular interactions. In this study, we investigate the effect of stereochemistry, which dictates the spatial location of backbone and pendant groups, on the interaction between sequence-defined oligourethanes and bisphenol A ligands. Various methods are explored to analyze the receptor-like properties of model oligomers and the ligand. The accuracy of molecular dynamics simulations and experimental techniques is assessed to uncover the impact of discrete changes in stereochemical arrangements on the structures of the resulting complexes and their binding strengths. Detailed computational investigations providing atomistic details show that the formed complexes demonstrate significant structural diversity depending on the sequence of stereocenters, thus affecting the oligomer-ligand binding strength. Among the tested techniques, the fluorescence spectroscopy data, fitted to the Stern-Volmer equation, are consistently aligned with the calculations, thus validating the developed simulation methodology. The developed methodology opens a way to engineer the structure of sequence-defined oligomers with receptor-like functionality to explore their practical applications, e.g., as sensory materials.
Collapse
Affiliation(s)
- Maksymilian Szatko
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Weronika Forysiak
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Sara Kozub
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
| | - Tadeusz Andruniów
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Roza Szweda
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland
- Center
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
6
|
Mendapara JV, Vaghasiya MD, Rajani DP, Ahmad I, Patel H, Kumari P. Benzimidazole and piperidine containing novel 1,2,3-triazole hybrids as anti-infective agents: Design, synthesis, in silico and in vitro antimicrobial efficacy. J Biochem Mol Toxicol 2024; 38:e23526. [PMID: 37668402 DOI: 10.1002/jbt.23526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Cu alkyne-azide cycloaddition was used to easily synthesize a library of novel heterocycles containing benzimidazole and piperidine based 1,2,3-triazole(7a-7l) derivatives. The synthesized analogs were characterized by various spectroscopic techniques like FTIR, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and mass spectrometry. All these novel bioactive compounds (7a-7l) were evaluated for in vitro antibacterial and antifungal efficacy. Compound 7k exhibited appreciable potent activity against Escherichia coli strain. Compounds 7a, 7b, 7f, and 7i showed excellent potent activity against all bacterial strains. Compound 7b, 7c, 7d, and 7g derivatives showed excellent effects when tested in vitro for antifungal activity against various fungal strains. Additionally, a molecular docking investigation revealed that compound 7k has the ability to bind to the active site of the E. coli DNA gyrase subunit protein and form hydrogen bonds with significant amino acid residues Asp73 and Asp49 in the active sites. In a 100 ns molecular dynamics simulation, the E. coli DNA gyrase protein's steady capacity to bind compound 7k was shown by the low measured root mean square deviation, which was an indication of the complex's conformational stability.
Collapse
Affiliation(s)
- Jigarkumar V Mendapara
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Mahesh D Vaghasiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Premlata Kumari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| |
Collapse
|
7
|
Stebletsova IA, Larin AA, Ananyev IV, Fershtat LL. Regioselective Synthesis of NO-Donor (4-Nitro-1,2,3-triazolyl)furoxans via Eliminative Azide-Olefin Cycloaddition. Molecules 2023; 28:6969. [PMID: 37836813 PMCID: PMC10574565 DOI: 10.3390/molecules28196969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A facile and efficient method for the regioselective [3 + 2] cycloaddition of 4-azidofuroxans to 1-dimethylamino-2-nitroethylene under p-TSA catalysis affording (4-nitro-1,2,3-triazolyl)furoxans was developed. This transformation is believed to proceed via eliminative azide-olefin cycloaddition resulting in its complete regioselectivity. The developed protocol has a broad substrate scope and enables a straightforward assembly of the 4-nitro-1,2,3-triazole motif. Moreover, synthesized (4-nitro-1,2,3-triazolyl)furoxans were found to be capable of NO release in a broad range of concentrations, thus providing a novel platform for future drug design and related biomedical applications of heterocyclic NO donors.
Collapse
Affiliation(s)
- Irina A. Stebletsova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
- D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexander A. Larin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
| | - Ivan V. Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky Prospect, 31, 119991 Moscow, Russia;
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
| |
Collapse
|
8
|
Aksakal R, Tonneaux C, Uvyn A, Fossépré M, Turgut H, Badi N, Surin M, De Geest BG, Du Prez FE. Sequence-defined antibody-recruiting macromolecules. Chem Sci 2023; 14:6572-6578. [PMID: 37350815 PMCID: PMC10284026 DOI: 10.1039/d3sc01507f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Antibody-recruiting molecules represent a novel class of therapeutic agents that mediate the recruitment of endogenous antibodies to target cells, leading to their elimination by the immune system. Compared to single-ligand copies, macromolecular scaffolds presenting multiple copies of an antibody-binding ligand offer advantages in terms of increased complex avidity. In this study, we describe the synthesis of sequence-defined macromolecules designed for antibody recruitment, utilising dinitrophenol (DNP) as a model antibody-recruiting motif. The use of discrete macromolecules gives access to varying the spacing between DNP motifs while maintaining the same chain length. This characteristic enables the investigation of structure-dependent binding interactions with anti-DNP antibodies. Through solid-phase thiolactone chemistry, we synthesised a series of oligomers with precisely localised DNP motifs along the backbone and a terminal biotin motif for surface immobilisation. Utilising biolayer interferometry analysis, we observed that oligomers with adjacent DNP motifs exhibited enhanced avidity for anti-DNP antibodies. Molecular modelling provided insights into the structures and dynamics of the various macromolecules, shedding light on the accessibility of the ligands to the antibodies. Overall, our findings highlight that the use of sequence-defined macromolecules can contribute to our understanding of structure-activity relationships and provide insights for the design of novel antibody-recruiting therapeutic agents.
Collapse
Affiliation(s)
- Resat Aksakal
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Corentin Tonneaux
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS 7000 Mons Belgium
| | - Annemiek Uvyn
- Department of Pharmaceutics, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS 7000 Mons Belgium
| | - Hatice Turgut
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS 7000 Mons Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| |
Collapse
|
9
|
Anand A, Kumar R, Maity J, Maikhuri VK. Recent progress in the Cu-catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2174031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Akash Anand
- Department of Chemistry, Patna University, Patna, India;
| | - Rajneesh Kumar
- Department of Chemistry, Patna University, Patna, India;
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen’s College, University of Delhi, Delhi, India
| | - Vipin K. Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Chen WY, Lin WH, Kuo CJ, Liang CF. Base-mediated ketenimine formation from N-sulfonylthioimidates for the synthesis of 5-amino-1-vinyl/aryl-1,2,3-triazoles. Chem Commun (Camb) 2023; 59:1297-1300. [PMID: 36633138 DOI: 10.1039/d2cc06708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
N-Sulfonylthioimidate was converted to ketenimine under basic conditions. The reaction with vinyl/aryl azides was induced to cause dipolar cycloaddition to form 5-amino-1-vinyl/aryl-1,2,3-triazoles. The advantages of this method are high efficiency, structural diversity of products favorable yields and applicability to gram-scale operations.
Collapse
Affiliation(s)
- Wan-Yu Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wei-Han Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chia-Jou Kuo
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
11
|
Li M, Ma JA, Liao S. Atom-Transfer Radical Polymerization of a SuFExable Vinyl Monomer and Polymer Library Construction via SuFEx Click Reaction. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Meng Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Jun-An Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Ministry of Education, Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Beijing National Laboratory of Molecular Science (BNLMS), Beijing 100190, China
| |
Collapse
|
12
|
Regioselective Synthesis and Molecular Docking Studies of 1,5-Disubstituted 1,2,3-Triazole Derivatives of Pyrimidine Nucleobases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238467. [PMID: 36500573 PMCID: PMC9735522 DOI: 10.3390/molecules27238467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
1,2,3-triazoles are versatile building blocks with growing interest in medicinal chemistry. For this reason, organic chemistry focuses on the development of new synthetic pathways to obtain 1,2,3-triazole derivatives, especially with pyridine moieties. In this work, a novel series of 1,5-disubstituted-1,2,3-triazoles functionalized with pyrimidine nucleobases were prepared via 1,3-dipolar cycloaddition reaction in a regioselective manner for the first time. The N1-propargyl nucleobases, used as an alkyne intermediate, were obtained in high yields (87-92%) with a new two-step procedure that selectively led to the monoalkylated compounds. Then, FeCl3 was employed as an efficient Lewis acid catalyst for 1,3-dipolar cycloaddition between different aryl and benzyl azides and the N1-propargyl nucleobases previously synthesized. This new protocol allows the synthesis of a series of new 1,2,3-triazole derivatives with good to excellent yields (82-92%). The ADME (Absorption, Distribution, Metabolism, and Excretion) analysis showed good pharmacokinetic properties and no violations of Lipinsky's rules, suggesting an appropriate drug likeness for these new compounds. Molecular docking simulations, conducted on different targets, revealed that two of these new hybrids could be potential ligands for viral and bacterial protein receptors such as human norovirus capsid protein, SARS-CoV-2 NSP13 helicase, and metallo-β-lactamase.
Collapse
|
13
|
Radwan EK, Rashdan HRM, Hemdan BA, Koryam AA, El-Naggar ME. A dual-functional sulfone biscompound containing 1,2,3-triazole moiety for decolorization and disinfection of contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77238-77252. [PMID: 35676578 PMCID: PMC9581830 DOI: 10.1007/s11356-022-20932-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 05/28/2023]
Abstract
Water decontamination from toxic dyes and pathogenic microorganisms is critical for life on Earth. Herein, we report the synthesis of sulfone biscompound containing 1,2,3-triazole moiety and evaluation of its dye decolorization and biocidal and disinfection efficiencies. The decolorization efficiency was tested under different experimental conditions, while the biocidal action was examined against various types of waterborne pathogens, and the disinfection of some pathogenic microbes was executed in artificially contaminated water. The findindgs illustrated that the solution initial pH (pHi) affected the decolorization efficiency significantly. About complete removal of 10 mg/L malachite green (MG) dye was achieved after 10 min using 3 g/L of the sulfone biscompound at pHi 6. The pseudo-second-order equation suited the adsorption kinetics accurately, while the equilibrium data was suited by Langmuir isotherm model. Electrostatic, n-π, and π-π interactions brought about the adsorption of MG onto the sulfone biscompound. The biocidal results indicated that the sulfone biscompound had a powerful antibacterial potential against the tested bacterial species. Likewise, the distinction trail revealed that after 70-90 min of direct contact with an effective dose, the tested pathogens could be completely eliminated (6-log reduction). Overall, the newly synthesized sulfone biscompound can efficiently remove cationic dyes and disinfect contaminated water.
Collapse
Affiliation(s)
- Emad K Radwan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt.
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Asmaa A Koryam
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St, Dokki, Giza, 12622, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, 33 El Bohouth St, Dokki, Giza, 12622, Egypt.
| |
Collapse
|
14
|
Yadav P, Kaushik CP, Kumar A. Synthesis and antimicrobial activity of piperazine containing substituted 1,2,3-triazoles with amide linkage. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2132868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Priyanka Yadav
- Organic Research Laboratory, Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - C. P. Kaushik
- Organic Research Laboratory, Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Ashwani Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Science, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
15
|
Niu L, Song N, Wang X, Ding S. Internally Functionalized Dendrimers Based on Fully Substituted 1,2,3-Triazoles. Macromol Rapid Commun 2022; 43:e2200375. [PMID: 35766341 DOI: 10.1002/marc.202200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/11/2022] [Indexed: 11/08/2022]
Abstract
Being one important class in dendrimer chemistry, internally functionalized dendrimers (IFDs) are still exiguous. Here we demonstrate the first construction of IFDs involving fully substituted 1,2,3-triazole rings as interior functionality carriers. Through divergent or convergent synthetic protocols established on the efficient iridium-catalyzed annulation of internal 1-thioalkynes with organic azides (IrAAC), sequence-controlled heterolayered dendrimers with different branched structures are achieved in a convenient manner. 1 H NMR, MS and SEC characterizations well identify their architecture and high purity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lijiao Niu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ningning Song
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaojun Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
16
|
Rengasamy R, Raj JP, Vijayalakshmi K, Punitha N, Kesavan M, Vajjiravel M, Elangovan J. Tunable Synthesis of 1,2,3‐Triazoles and Enamines through Deacylative Azide‐Alkene Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R. Rengasamy
- Rajah Serfoji Government College Chemistry INDIA
| | - J. Paul Raj
- BS Abdur Rahman University: B S Abdur Rahman Crescent Institute of Science & Technology Chemistry INDIA
| | | | - N. Punitha
- Rajah Serfoji Government College Chemistry INDIA
| | - M. Kesavan
- SRM-RI: SRM Research Institute Kattankulathur IISM INDIA
| | - M Vajjiravel
- BS Abdur Rahman University: B S Abdur Rahman Crescent Institute of Science & Technology Chemistry INDIA
| | | |
Collapse
|
17
|
Wang Z, Zhou X, Gong S, Xie J. MOF-Derived Cu@N-C Catalyst for 1,3-Dipolar Cycloaddition Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1070. [PMID: 35407188 PMCID: PMC9000828 DOI: 10.3390/nano12071070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Cu(im)2-derived Cu@N-C composites were used for the first time as efficient heterogeneous catalysts for one-pot 1,3-dipolar cycloaddition of terminal alkynes, aryl halides, and sodium azide to preparation of 1,4-disubstituted 1,2,3-triazoles with broad substrate scope and high yields. The catalyst can be easily reused without the changes of structure and morphology, and the heterogeneity nature was confirmed from the catalyst recyclability and metal leaching test.
Collapse
Affiliation(s)
- Zhuangzhuang Wang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
| | - Xuehao Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
| | - Shaofeng Gong
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
| | - Jianwei Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China;
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China;
| |
Collapse
|
18
|
Caiana RRA, Santos CS, de Oliveira RN, Freitas JCR. Scientific and Technological Prospecting of 1H-1,2,3-Triazoles. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126153429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The use of 1H-1,2,3-triazoles has become an important scaffold for applications in different technological sectors. Therefore, we sought to carry out a technological monitoring to understand the international scenario involving 1H-1,2,3-triazoles from the patents filed, in addition to evaluating the relationship between the growth in the number of patents and the improvement of strategies for obtaining of these compounds via a metal-catalyzed azide-alkyne cycloaddition reaction. Technological monitoring was performed with the support of the PatentInspiration® platform, using the keywords "1,2,3-triazol", "1,2,3-triazole", and "1,2,3-triazolyl". A total of 960 registered patents were found, most for the years 2014 and 2019. The main filers were prestigious multinational companies such as Syngenta, Merck, Sandoz, Pfizer, and Bayer. The United States, China, Japan, and Germany lead patent registrations, mainly addressing innovations in chemistry and metallurgy, human needs, and new technologies. These results help to understand the state of innovation for this topic, pointing out the characteristics of the main discoveries concerning 1H-1,2,3-triazole derivatives.
Collapse
Affiliation(s)
| | - Cosme Silva Santos
- Department of Chemistry, Federal Rural University of Pernambuco, 52171-900, Recife-PE, Brazil
| | | | | |
Collapse
|
19
|
Rengasamy R, Vijayalakshmi K, Punitha N, Paul Raj J, Karthikeyan K, Elangovan J. A novel route to 1,4-disubstituted-1,2,3-triazoles through metal-free decarboxylative azide-alkene cycloaddition. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Wang X, Zhang X, Sun Y, Ding S. Stereocontrolled Sequence-Defined Oligotriazoles through Metal-Free Elongation Strategies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaojun Wang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueyan Zhang
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunxin Sun
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengtao Ding
- State Key Laboratory of Organic−Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Zhang H, Zhou Z, Chen X, Yu B, Luo Z, Li X, Rahman MA, Sha Y. Sequence-Controlled Metallopolymers: Synthesis and Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hao Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhou Zhou
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Yu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyang Luo
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Md Anisur Rahman
- Chemical Science Division, Oak Ridge National LaboratoryOak Ridge, Tennessee 37831-2008, United States
| | - Ye Sha
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
22
|
Yang C, Niu J. Just a click away. Nat Chem 2021; 13:820-821. [PMID: 34400817 DOI: 10.1038/s41557-021-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cangjie Yang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
23
|
Wang X, Zhang X, Wang Y, Ding S. IrAAC-based construction of dual sequence-defined polytriazoles. Polym Chem 2021. [DOI: 10.1039/d1py00718a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
One novel dual sequence-defined polytriazole structure was facilely achieved through an IrAAC-based iterative sequential growth strategy.
Collapse
Affiliation(s)
- Xiaojun Wang
- State Key Laboratory of Organic–Inorganic Composites
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Xueyan Zhang
- State Key Laboratory of Organic–Inorganic Composites
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yong Wang
- BGI-Shenzhen
- Beishan Industrial Zone
- Shenzhen 518083
- China
| | - Shengtao Ding
- State Key Laboratory of Organic–Inorganic Composites
- College of Chemical Engineering
- Beijing University of Chemical Technology
- Beijing
- China
| |
Collapse
|