1
|
Nguyen TTT, Breloy L, Rios De Anda A, Hayek H, Chiappone A, Malval JP, Grande D, Versace DL. Thioxanthone-Based Siloxane Photosensitizer for Cationic/Radical Photopolymerization and Photoinduced Sol-Gel Reactions. Molecules 2024; 29:255. [PMID: 38202842 PMCID: PMC10780806 DOI: 10.3390/molecules29010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
In this investigation, a multifunctional visible-light TX-based photosensitizer containing a siloxane moiety (TXS) was designed with a good overall yield of 54%. The addition of a siloxane moiety enabled the incorporation of a TX photosensitizer into a siloxane network by photoinduced sol-gel chemistry, thus avoiding its release. Both liquid 1H and solid-state 29Si NMR measurements undeniably confirmed the formation of photoacids resulting from the photolysis of the TXS/electron acceptor molecule (Iodonium salt), which promoted the photoinduced hydrolysis/condensation of the trimethoxysilane groups of TXS, with a high degree of condensation of its inorganic network. Notably, the laser flash photolysis, fluorescence, and electron paramagnetic resonance spin-trapping (EPR ST) experiments demonstrated that TXS could react with Iod through an electron transfer reaction through its excited states, leading to the formation of radical initiating species. Interestingly, the TXS/Iod was demonstrated to be an efficient photoinitiating system for free-radical (FRP) and cationic (CP) polymerization under LEDs@385, 405, and 455 nm. In particular, whatever the epoxy monomer mixtures used, remarkable final epoxy conversions were achieved up to 100% under air. In this latter case, we demonstrated that both the photoinduced sol-gel process (hydrolysis of trimethoxysilane groups) and the cationic photopolymerization occurred simultaneously.
Collapse
Affiliation(s)
- Thi-Thanh-Tam Nguyen
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Louise Breloy
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Agustin Rios De Anda
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Hassan Hayek
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Annalisa Chiappone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Via Università 40, 09124 Cagliari, Italy
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse, UMR CNRS 7361, Université de Haute Alsace, 15 Rue Jean Starcky, 68057 Mulhouse, France
| | - Daniel Grande
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| | - Davy-Louis Versace
- University Paris-Est Creteil, CNRS, ICMPE, UMR 7182, 94320 Thiais, France; (T.-T.-T.N.); (A.R.D.A.)
| |
Collapse
|
2
|
Dumur F. Recent Advances on Anthraquinone-based Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Electron Paramagnetic Resonance Spin Trapping (EPR–ST) Technique in Photopolymerization Processes. Catalysts 2022. [DOI: 10.3390/catal12070772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To face economic issues of the last ten years, free-radical photopolymerization (FRP) has known an impressive enlightenment. Multiple performing photoinitiating systems have been designed to perform photopolymerizations in the visible or near infrared (NIR) range. To fully understand the photochemical mechanisms involved upon light activation and characterize the nature of radicals implied in FRP, electron paramagnetic resonance coupled to the spin trapping (EPR–ST) method represents one of the most valuable techniques. In this context, the principle of EPR–ST and its uses in free-radical photopolymerization are entirely described.
Collapse
|
4
|
Versace DL, Breloy L, Brezova V, Abbad Andalloussi S, Malval JP, Richeter S, Clément S. Bio-based porphyrins pyropheophorbide a and its Zn-complex as performing visible-light photosensitizers for free-radical photopolymerization. Polym Chem 2022. [DOI: 10.1039/d1py01714d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chlorophyll a derivative, namely pyropheophorbide a (Pyro), and the corresponding zinc (II) complex (Zn-Pyro) were used for the first time as performing visible-light photosensitizers (PS) for free-radical photopolymerization (FRP)...
Collapse
|
5
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Versace DL, Breloy L, Palierse E, Coradin T. Contributions of photochemistry to bio-based antibacterial polymer materials. J Mater Chem B 2021; 9:9624-9641. [PMID: 34807217 DOI: 10.1039/d1tb01801a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical site infections constitute a major health concern that may be addressed by conferring antibacterial properties to surgical tools and medical devices via functional coatings. Bio-sourced polymers are particularly well-suited to prepare such coatings as they are usually safe and can exhibit intrinsic antibacterial properties or serve as hosts for bactericidal agents. The goal of this Review is to highlight the unique contribution of photochemistry as a green and mild methodology for the development of such bio-based antibacterial materials. Photo-generation and photo-activation of bactericidal materials are illustrated. Recent efforts and current challenges to optimize the sustainability of the process, improve the safety of the materials and extend these strategies to 3D biomaterials are also emphasized.
Collapse
Affiliation(s)
- Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Estelle Palierse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France. .,Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), UMR 7197, 4 place Jussieu, 75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
7
|
Ahn D, Stevens LM, Zhou K, Page ZA. Additives for Ambient 3D Printing with Visible Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104906. [PMID: 34523168 DOI: 10.1002/adma.202104906] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
With 3D printing, the desire is to be "limited only by imagination," and although remarkable advancements have been made in recent years, the scope of printable materials remains narrow compared to other forms of manufacturing. Light-driven polymerization methods for 3D printing are particularly attractive due to unparalleled speed and resolution, yet the reliance on high-energy UV/violet light in contemporary processes limits the number of compatible materials due to pervasive absorption, scattering, and degradation at these short wavelengths. Such issues can be addressed with visible-light photopolymerizations. However, these lower-energy methods often suffer from slow reaction times and sensitivity to oxygen, precluding their utility in 3D printing processes that require rapid hardening (curing) to maximize build speed and resolution. Herein, multifunctional thiols are identified as simple additives to enable rapid high-resolution visible-light 3D printing under ambient (atmospheric O2 ) conditions that rival modern UV/violet-based technology. The present process is universal, providing access to commercially relevant acrylic resins with a range of disparate mechanical responses from strong and stiff to soft and extensible. Pushing forward, the insight presented within this study will inform the development of next-generation 3D-printing materials, such as multicomponent hydrogels and composites.
Collapse
Affiliation(s)
- Dowon Ahn
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Lynn M Stevens
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Kevin Zhou
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, TX, 78712, USA
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Breloy L, Mhanna R, Malval JP, Brezová V, Jacquemin D, Pascal S, Siri O, Versace DL. Azacalixphyrins as an innovative alternative for the free-radical photopolymerization under visible and NIR irradiation without the need of co-initiators. Chem Commun (Camb) 2021; 57:8973-8976. [PMID: 34486621 DOI: 10.1039/d1cc03607f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Azacalixphyrins are unique aromatic macrocycles featuring strong absorption from the visible to the near-infrared (NIR) spectral ranges. This work demonstrates through EPR spin-trapping experiments that the N-alkyl tetrasubstituted azacalixphyrin (ACP) can lead to the formation of carbon-centered radicals initiating for the free-radical photopolymerization (FRP) of bio-based acrylate monomer upon the irradiation of several light emitting diodes, which emissions range from 455 to 660 nm. Compared to other previously reported systems, the tremendous advantage of the ACP photoinitiating system is its ability to promote photopolymerization on its own, avoiding the introduction of co-initiators. A new potential application of this promising photoinitiator is highlighted through the fabrication of well-defined microstructures under NIR laser diode irradiation at λ = 800 nm.
Collapse
Affiliation(s)
- Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (UMR-CNRS 7182-UPEC), 2-8 rue Henri Dunant, Thiais 94320, France.
| | - Rana Mhanna
- Institut de Science des Matériaux de Mulhouse (IS2M) (UMR-CNRS 7361), 15, rue Jean Starcky, Mulhouse 68057, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse (IS2M) (UMR-CNRS 7361), 15, rue Jean Starcky, Mulhouse 68057, France
| | - Vlasta Brezová
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Radlinského 9, Bratislava SK-812 37, Slovak Republic
| | - Denis Jacquemin
- Université de Nantes, CEISAM UMR 6230, CNRS, Nantes F-44000, France.
| | - Simon Pascal
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09 13288, France.
| | - Olivier Siri
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09 13288, France.
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (UMR-CNRS 7182-UPEC), 2-8 rue Henri Dunant, Thiais 94320, France.
| |
Collapse
|
9
|
Lawsone Derivatives as Efficient Photopolymerizable Initiators for Free-Radical, Cationic Photopolymerizations, and Thiol-Ene Reactions. Polymers (Basel) 2021; 13:polym13122015. [PMID: 34203069 PMCID: PMC8234034 DOI: 10.3390/polym13122015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Two new photopolymerizable vinyl (2-(allyloxy) 1,4-naphthoquinone, HNQA) and epoxy (2-(oxiran-2yl methoxy) 1,4-naphthoquinone, HNQE) photoinitiators derived from lawsone were designed in this paper. These new photoinitiators can be used as one-component photoinitiating systems for the free-radical photopolymerization of acrylate bio-based monomer without the addition of any co-initiators. As highlighted by the electron paramagnetic resonance (EPR) spin-trapping results, the formation of carbon-centered radicals from an intermolecular H abstraction reaction was evidenced and can act as initiating species. Interestingly, the introduction of iodonium salt (Iod) used as a co-initiator has led to (1) the cationic photopolymerization of epoxy monomer with high final conversions and (2) an increase of the rates of free-radical polymerization of the acrylate bio-based monomer; we also demonstrated the concomitant thiol–ene reaction and cationic photopolymerizations of a limonene 1,2 epoxide/thiol blend mixture with the HNQA/Iod photoinitiating system.
Collapse
|