1
|
Hyder M, Godleman J, Chippindale AM, Hallett JE, Zinn T, Harries JL, Hayes W. Thermally and Base-Triggered "Debond-on-Demand" Chain-Extended Polyurethane Adhesives. Macromolecules 2025; 58:681-696. [PMID: 39831293 PMCID: PMC11741135 DOI: 10.1021/acs.macromol.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
A series of novel chain-extended polyurethanes (CEPUs) featuring degradable sulfonyl ethyl urethane chain-extenders that permit degradation under base-triggered conditions to afford "debond-on-demand" elastomeric adhesives are reported. Exposure of the CEPUs to tetra-butylammonium fluoride (TBAF) triggered the degradation of the sulfonyl ethyl urethane chain-extenders. Lap shear adhesion tests of the CEPUs exposed to TBAF revealed reductions in shear strength of up to 65% for both aluminum and glass substrates, from 2.18 to 0.76 MPa and from 1.13 to 0.52 MPa, respectively. The selective depolymerization of these polymers makes them suitable candidates as debondable binders for inkjet inks and coatings, enabling removal of inks and adhesive residues from substrates before they enter the recycling process, to prevent surface contaminants decreasing the quality of the recycled material.
Collapse
Affiliation(s)
- Matthew
J. Hyder
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Jessica Godleman
- Domino
UK Ltd., Trafalgar Way, Bar Hill, Cambridge CB23 8TU, U.K.
| | - Ann M. Chippindale
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - James E. Hallett
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Thomas Zinn
- Diamond
Light Source, Diamond Light Source Ltd., Harwell Science & Innovation
Campus, Didcot OX11 0DE, U.K.
| | | | - Wayne Hayes
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
2
|
Tong J, Shu J, Wang Y, Qi Y, Wang Y. A bioactive sprite: Recent advances in the application of vinyl sulfones in drug design and organic synthesis. Life Sci 2024; 352:122904. [PMID: 38986895 DOI: 10.1016/j.lfs.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Vinyl sulfones, with their exceptional chemical properties, are known as the "chameleons" of organic synthesis and are widely used in the preparation of various sulfur-containing structures. However, their most alluring feature lies in their biological activity. The vinyl sulfone skeleton is ubiquitous in natural products and drug molecules and boasts a unique molecular structure and drug activity when compared to conventional drug molecules. As a result, vinyl sulfones have been extensively studied, playing a critical role in organic synthesis and pharmaceutical chemistry. In this review, we present a comprehensive analysis of the recent applications of vinyl sulfone structures in drug design, biology, and chemical synthesis. Furthermore, we explore the prospects of vinyl sulfones in diverse fields, offering insight into their potential future applications.
Collapse
Affiliation(s)
- Jiangtao Tong
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiong Shu
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuhua Wang
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yajuan Qi
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Ratzenböck K, Fischer SM, Slugovc C. Poly(ether)s derived from oxa-Michael polymerization: a comprehensive review. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
AbstractPoly(ether)s represent an important class of polymers and are typically formed by ring-opening polymerization, Williamson ether synthesis, or self-condensation of alcohols. The oxa-Michael reaction presents another method to form poly(ether)s with additional functional groups in the polymer backbone starting from di- or triols and electron deficient olefins such as acrylates, sulfones, or acrylamides. However, research on oxa-Michael polymerization is still limited. Herein, we outline the principles of the oxa-Michael polymerization and focus on the synthesis and preparation of poly(ether-sulfone)s, poly(ether-ester)s, poly(ether)s, and poly(ether-amide)s. Further, challenges as well as future perspectives of the oxa-Michael polymerization are discussed.
Graphical abstract
Collapse
|
4
|
Ziegenbalg N, Gruschwitz FV, Adermann T, Mayr L, Guriyanova S, Brendel JC. Vinyl mercaptoethanol as a reactive monomer for the preparation of functional homo- and copolymers with (meth)acrylates. Polym Chem 2022. [DOI: 10.1039/d2py00598k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vinyl mercaptoethanol is a scalable vinyl thioether monomer, which can readily be polymerized in a free radical process or by controlled methods. It tends to form alternating copolymers if copolymerized with acrylates and methacrylates.
Collapse
Affiliation(s)
- Nicole Ziegenbalg
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Franka V. Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Torben Adermann
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen/Rhein, Germany
| | - Lukas Mayr
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen/Rhein, Germany
| | | | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
5
|
Ziegenbalg N, Elbinger L, Schubert US, Brendel JC. Polymers from S-vinyl monomers: reactivities and properties. Polym Chem 2022. [DOI: 10.1039/d2py00850e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarises the work of several decades on the polymerisation of S-vinyl monomers, ranging from the early reports of suitable polymerisation techniques for these monomers to their recent renaissance in various applications.
Collapse
Affiliation(s)
- Nicole Ziegenbalg
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Lada Elbinger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
6
|
Ratzenböck K, Ud Din MM, Fischer SM, Žagar E, Pahovnik D, Boese AD, Rettenwander D, Slugovc C. Water as a monomer: synthesis of an aliphatic polyethersulfone from divinyl sulfone and water. Chem Sci 2022; 13:6920-6928. [PMID: 35774179 PMCID: PMC9200112 DOI: 10.1039/d2sc02124b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Using water as a monomer in polymerization reactions presents a unique and exquisite strategy towards more sustainable chemistry. Herein, the feasibility thereof is demonstrated by the introduction of the oxa-Michael polyaddition of water and divinyl sulfone. Upon nucleophilic or base catalysis, the corresponding aliphatic polyethersulfone is obtained in an interfacial polymerization at room temperature in high yield (>97%) within an hour. The polyethersulfone is characterized by relatively high molar mass averages and a dispersity around 2.5. The polymer was tested as a solid polymer electrolyte with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the salt. Free-standing amorphous membranes were prepared by a melt process in a solvent-free manner. The polymer electrolyte containing 15 wt% LiTFSI featured an oxidative stability of up to 5.5 V vs. Li/Li+ at 45 °C and a conductivity of 1.45 × 10−8 S cm−1 at room temperature. This study describes the first example of the polymerization of water as one of two monomers. The obtained polymer allows for a solvent-free preparation of polymer electrolyte membranes exhibiting a high oxidative stability.![]()
Collapse
Affiliation(s)
- Karin Ratzenböck
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Mir Mehraj Ud Din
- Department of Material Science and Engineering, NTNU Norwegian University of Science and Technology, Sem Sælands vei 12, 7034 Trondheim, Norway
- International Christian Doppler Laboratory for Solid-State Batteries, NTNU Norwegian University of Science and Technology, Sem Sælands vei 12, 7034 Trondheim, Norway
| | - Susanne M. Fischer
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Ema Žagar
- National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - David Pahovnik
- National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - A. Daniel Boese
- Physical and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria
| | - Daniel Rettenwander
- Department of Material Science and Engineering, NTNU Norwegian University of Science and Technology, Sem Sælands vei 12, 7034 Trondheim, Norway
- International Christian Doppler Laboratory for Solid-State Batteries, NTNU Norwegian University of Science and Technology, Sem Sælands vei 12, 7034 Trondheim, Norway
| | - Christian Slugovc
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
7
|
Sitte NA, Menche M, Tužina P, Bienewald F, Schäfer A, Comba P, Rominger F, Hashmi ASK, Schaub T. Phosphine-Catalyzed Vinylation at Low Acetylene Pressure. J Org Chem 2021; 86:13041-13055. [PMID: 34469141 DOI: 10.1021/acs.joc.1c01807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vinylation of various nucleophiles with acetylene at a maximum pressure of 1.5 bar is achieved by organocatalysis with easily accessible phosphines like tri-n-butylphosphine. A detailed mechanistic investigation by quantum-chemical and experimental methods supports a nucleophilic activation of acetylene by the phosphine catalyst. At 140 °C and typically 5 mol % catalyst loading, cyclic amides, oxazolidinones, ureas, unsaturated cyclic amines, and alcohols were successfully vinylated. Furthermore, the in situ generation of a vinyl phosphonium species can also be utilized in Wittig-type functionalization of aldehydes.
Collapse
Affiliation(s)
- Nikolai A Sitte
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
| | - Maximilian Menche
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany.,BASF SE, Quantum Chemistry, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Pavel Tužina
- BASF SE, Chemical Synthesis Research, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Frank Bienewald
- BASF SE, Chemical Synthesis Research, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Ansgar Schäfer
- BASF SE, Quantum Chemistry, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Peter Comba
- Institute of Inorganic Chemistry & Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany.,Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany.,BASF SE, Chemical Synthesis Research, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| |
Collapse
|
8
|
Tran-Do ML, Eid N, Totée C, Gimello O, Améduri B. Does the oxa-Michael reaction of 2-trifluoromethacrylic acid lead to fluorinated polyesters? Polym Chem 2021. [DOI: 10.1039/d1py00685a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Trifluoromethacrylic acid (MAF) is a peculiar fluorinated functional monomer.
Collapse
Affiliation(s)
| | - Nadim Eid
- Institut Charles Gerhardt
- Univ. Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Cédric Totée
- Institut Charles Gerhardt
- Univ. Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Olinda Gimello
- Institut Charles Gerhardt
- Univ. Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Bruno Améduri
- Institut Charles Gerhardt
- Univ. Montpellier
- CNRS
- ENSCM
- Montpellier
| |
Collapse
|