1
|
Sun N, Liu X, Lv W, Xu C, Zhang A, Sun P. Composite Hydrogels with Rapid Self-Healing, Stretchable, Moldable and Antibacterial Properties Based on PVA/ε-Poly-l-lysine/Hyaluronic Acid. Molecules 2024; 29:4666. [PMID: 39407595 PMCID: PMC11477695 DOI: 10.3390/molecules29194666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Self-healing, stretchable, and moldable hydrogels have a great potential application in tissue engineering and soft robotics. Despite great success in reported hydrogels, it is still a great challenge to construct the moldable hydrogels with an ultrafast self-healing performance. Herein, the composite hydrogels (PBLH) with ultrafast self-healing, stretchable, and moldable properties were successfully constructed by poly (vinyl alcohol) (PVA), borate (B), ε-poly-l-lysine (EPL), and hyaluronic acid (HA) based on an efficient one-pot method. Fourier transform infrared spectroscopy, X-ray diffraction, and rheological measurements confirmed the formation of a dynamic network among PVA, B, EPL, and HA through the cross-linking of dynamic borate bonds, electrostatic interaction, and hydrogen bonding. Having fabricated the dynamic network structure, the damage gap of the composite hydrogels can heal within 1 min, presenting an excellent self-healing ability. Simultaneously, the composite hydrogels can be molded into various shapes, and the length of the composite hydrogels can be stretched to 15 times their original length. In addition, the composite hydrogels exhibited an excellent antibacterial property against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Our results illustrated that the composite hydrogels not only retain the advantages of traditional hydrogels but also possess ultrafast self-healing, outstanding stretchable and antibacterial properties, presenting a prospective candidate for constructing biomedical materials.
Collapse
Affiliation(s)
- Na Sun
- College of Pharmacy, Shandong Second Medical University, Weifang 261053, China;
| | - Xiangnan Liu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China; (X.L.); (W.L.); (C.X.)
| | - Wenqi Lv
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China; (X.L.); (W.L.); (C.X.)
| | - Chunlin Xu
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China; (X.L.); (W.L.); (C.X.)
| | - Ailing Zhang
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
| | - Panpan Sun
- School of Bioscience and Technology, Shandong Second Medical University, Weifang 261053, China; (X.L.); (W.L.); (C.X.)
| |
Collapse
|
2
|
Wang Z, Cheng Q, Lu B, Zhang P, Zhang L, Wu W, Li J, Narain R. Fabrication of antimicrobial cationic hydrogels driven by physically and chemically crosslinking for wound healing. Int J Biol Macromol 2024; 259:129213. [PMID: 38184052 DOI: 10.1016/j.ijbiomac.2024.129213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
The wound therapy based on antibiotic delivery inevitably leads to the emergence of drug resistance. Hydrogel biomaterials with inherent antibacterial activities have emerged as promising candidates for addressing this issue. However, developing an inherently antibacterial hydrogel through simple and facile strategies to promote localized wound infection healing remains a challenge. In this study, we successfully constructed antimicrobial cationic hydrogels with self-healing and injectable properties through physically and chemically dual-crosslinked networks. The networks were formed by the copolymers poly[(di(ethylene glycol) methyl ether methacrylate)-co-(4-formylphenyl methacrylate)-co-(2-(methacryloyloxy)ethyl]trimethylammonium chloride solution)] (PDFM) and poly[(di(ethylene glycol) methyl ether methacrylate)-co-(2-aminoethyl methacrylate hydrochloride)-co-(2-(((6-(6-methyl-4[1H]pyrimidionylureido) hexyl)carbamoyl)oxy)ethyl methacrylate)] (PDAU). The hydrogel systems effectively facilitate the regeneration and healing of infected wounds through the contact bactericidal feature of quaternary ammonium cations. The presence of Schiff base bonds in the injectable hydrogels imparts remarkable pH responsiveness and self-healing properties. In vitro experiments verified their intrinsic antibacterial activities along with their favorable cytocompatibility and hemocompatibility in both in vitro and in vivo. In addition, the hydrogel significantly accelerated the healing of bacterially infected in a full-thickness skin wound. This facilely prepared dual-crosslinked hydrogel, without antibiotics loading, holds significant prospects for treating infected wounds.
Collapse
Affiliation(s)
- Zhihao Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China; School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Binzhong Lu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Panpan Zhang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Leitao Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luoyang 471023, PR China
| | - Junbo Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Ravin Narain
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Peng YY, Cheng Q, Wu M, Wang W, Zhao J, Diaz-Dussan D, McKay M, Zeng H, Ummartyotin S, Narain R. Highly Stretchable, Self-Healing, Injectable and pH Responsive Hydrogel from Multiple Hydrogen Bonding and Boron-Carbohydrate Interactions. Gels 2023; 9:709. [PMID: 37754389 PMCID: PMC10530767 DOI: 10.3390/gels9090709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
A simple and cost-effective method for the fabrication of a safe, dual-responsive, highly stretchable, self-healing and injectable hydrogel is reported based on a combination of dynamic boronate ester bonds and hydrogen bonding interactions. The mechanical properties of the hydrogel are tunable by adjusting the molar ratios between sugar moieties on the polymer and borax. It was remarkable to note that the 2:1 ratio of sugar and borate ion significantly improves the mechanical strength of the hydrogel. The injectability, self-healing and stretchability properties of the hydrogel were also examined. In addition, the impact of the variation of the pH and the addition of free sugar responsiveness of the hydrogel was studied. High MRC-5 cell viability was noticed by the 3D live/dead assay after 24 h cell culture within the hydrogel scaffold. Hence, the developed hydrogels have desirable features that warrant their applications for drug delivery, scaffolds for cell and tissue engineering.
Collapse
Affiliation(s)
- Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Jianyang Zhao
- School of Biomedical Sciences and Engineering Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China;
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Michelle McKay
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada; (Y.-Y.P.); (M.W.); (W.W.); (D.D.-D.); (M.M.); (H.Z.)
| |
Collapse
|
4
|
Jiao Y, Rong Z, Gao C, Wu Y, Liu Y. Tannic Acid Crosslinked Self-Healing and Reprocessable Silicone Elastomers with Improved Antibacterial and Flame Retardant Properties. Macromol Rapid Commun 2023; 44:e2200681. [PMID: 36125336 DOI: 10.1002/marc.202200681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Silicone elastomers are widely used in aviation, electronics, automotive, and medical device fields, and their overuse inevitably causes recycled problems. In addition, the elastomers are subject to attack by bacteria and fire during use in some application scenarios, which is a safety hazard. Therefore, there is a great need to prepare silicone elastomers with improved antibacterial, flame retardant, self-healing, and recyclable functions. A new strategy is proposed to prepare silicone elastomers with bio-based tannic acid as cross-linkers to solve this problem by using polydimethylsiloxane as a soft chain segment and 2,2-bis(hydroxymethyl)propionic acid as an intermediate chain extender. Based on the phenol carbamate bonding and hydrogen bonding interactions, the elastomer has efficient self-healing ability and can achieve dynamic dissociation at 120 °C for complete recovery. In addition, due to the unique spatial structure and polyphenolic hydroxyl groups of tannic acid, the mechanical properties of the elastomer are greatly improved with an antimicrobial efficiency of over 90% and a final oxygen index of 25.5%. The multifunctional silicone elastomer has great potential applications in recyclable refractory materials and antimicrobial materials.
Collapse
Affiliation(s)
- Yizhi Jiao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhihao Rong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yumin Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuetao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
5
|
Yang K, Zhou X, Li Z, Wang Z, Luo Y, Deng L, He D. Ultrastretchable, Self-Healable, and Tissue-Adhesive Hydrogel Dressings Involving Nanoscale Tannic Acid/Ferric Ion Complexes for Combating Bacterial Infection and Promoting Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43010-43025. [PMID: 36108772 DOI: 10.1021/acsami.2c13283] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preventing bacterial infections and accelerating wound closure are essential in the process of wound healing. Current wound dressings lack enough mechanical properties, self-healing ability, and tissue adhesiveness, and the bacterial killing also relies on the use of antibiotic drugs. Herein, a well-designed hybrid hydrogel dressing is constructed by simple copolymerization of acrylamide (AM), 3-acrylamido phenylboronic acid (AAPBA), chitosan (CS), and the nanoscale tannic acid (TA)/ferric ion (Fe3+) complex (TFe). The resulting hydrogel possesses lots of free catechol, phenylboronic acid, amine, and hydroxyl groups and contains many reversible and dynamic bonds such as multiple hydrogen bonds and boronate ester bonds, thereby showing satisfactory mechanical properties, fast self-healing ability, and desirable tissue-adhesive performance. Benefiting from the high photothermal conversion efficiency of the TFe, the hydrogel exhibits satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria. Moreover, the embedded TFe also endows the hydrogel with good antioxidant activity, anti-inflammatory property, and cell proliferation to promote tissue regeneration. Remarkably, in vivo animal assays reveal that the hybrid hydrogel effectively eliminates biofilm bacteria in the wound sites and accelerates the healing process of infected wounds. Taken together, the developed versatile hydrogels overcome the shortcomings of traditional wound dressings and are expected to become potential antibacterial dressings for future biomedical applications.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Xueyao Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zhaoli Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Yuze Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| |
Collapse
|