1
|
Zhang L, Teri G, Qi L, Bai S, Liu X, Baiyin M. Syntheses, crystal structure, and photoelectric properties of two selenoantimonates A-Zn-Sb-Se (A = Rb and Cs). Dalton Trans 2024; 53:14735-14741. [PMID: 39158371 DOI: 10.1039/d4dt01944j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Metal chalcogenides, as a new class of semiconductor materials, have a broad range of applications in synthetic chemistry due to their rich structures and excellent properties. We have synthesized two selenoantimonates A4Zn2Sb2Se7 [A = Rb(1), Cs(2)] under solvothermal conditions in the visible region using a band gap optimization strategy with alkali metals as structure-directing agents. Compounds 1 and 2 have a two-dimensional layered structure consisting of charge-balanced Rb+(1) or Cs+(2) cations and [Zn2Sb2Se7]4- anions with novel 20-membered rings (20-MR) [Zn6Sb4Se10] with an aperture of 5.6949 × 13.7741 Å2 formed in the middle. Furthermore, we have investigated the crystal structure, band gap, photoelectronic properties, and energy band structure.
Collapse
Affiliation(s)
- Lirong Zhang
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of the Department of Education Inner Mongolia Autonomous Region, College of Chemistry & Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China.
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liming Qi
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of the Department of Education Inner Mongolia Autonomous Region, College of Chemistry & Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China.
| | - Sagala Bai
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of the Department of Education Inner Mongolia Autonomous Region, College of Chemistry & Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China.
| | - Xin Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Menghe Baiyin
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of the Department of Education Inner Mongolia Autonomous Region, College of Chemistry & Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China.
| |
Collapse
|
2
|
Feng P, Zhang JX, Ran MY, Wu XT, Lin H, Zhu QL. Rare-earth-based chalcogenides and their derivatives: an encouraging IR nonlinear optical material candidate. Chem Sci 2024; 15:5869-5896. [PMID: 38665521 PMCID: PMC11041271 DOI: 10.1039/d4sc00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/03/2024] [Indexed: 04/28/2024] Open
Abstract
With the continuous development of laser technology and the increasing demand for lasers of different frequencies in the infrared (IR) spectrum, research on infrared nonlinear optical (NLO) crystals has garnered growing attention. Currently, the three main commercially available types of borate materials each have their drawbacks, which limit their applications in various areas. Rare-earth (RE)-based chalcogenide compounds, characterized by the unique f-electron configuration, strong positive charges, and high coordination numbers of RE cations, often exhibit distinctive optical responses. In the field of IR-NLO crystals, they have a research history spanning several decades, with increasing interest. However, there is currently no comprehensive review summarizing and analyzing these promising compounds. In this review, we categorize 85 representative examples out of more than 400 non-centrosymmetric (NCS) compounds into four classes based on the connection of different asymmetric building motifs: (1) RE-based chalcogenides containing tetrahedral motifs; (2) RE-based chalcogenides containing lone-pair-electron motifs; (3) RE-based chalcogenides containing [BS3] and [P2Q6] motifs; and (4) RE-based chalcohalides and oxychalcogenides. We provide detailed discussions on their synthesis methods, structures, optical properties, and structure-performance relationships. Finally, we present several favorable suggestions to further explore RE-based chalcogenide compounds. These suggestions aim to approach these compounds from a new perspective in the field of structural chemistry and potentially uncover hidden treasures within the extensive accumulation of previous research.
Collapse
Affiliation(s)
- Ping Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- College of Chemistry, Fuzhou University Fuzhou 350002 China
- Fujian College, University of Chinese Academy of Sciences Fuzhou 350002 China
| | - Jia-Xiang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Mao-Yin Ran
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- Fujian College, University of Chinese Academy of Sciences Fuzhou 350002 China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- Fujian College, University of Chinese Academy of Sciences Fuzhou 350002 China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fujian 350108 China
- Fujian College, University of Chinese Academy of Sciences Fuzhou 350002 China
- Fujian Key Laboratory of Rare-earth Functional Materials, Fujian Shanhai Collaborative Innovation Center of Rare-earth Functional Materials Longyan 366300 China
| |
Collapse
|
3
|
Ran MY, Zhou SH, Wei WB, Li BX, Wu XT, Lin H, Zhu QL. Breaking Through the Trade-Off Between Wide Band Gap and Large SHG Coefficient in Mercury-Based Chalcogenides for IR Nonlinear Optical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304563. [PMID: 37786270 DOI: 10.1002/smll.202304563] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/16/2023] [Indexed: 10/04/2023]
Abstract
It is substantially challenging for non-centrosymmetric (NCS) Hg-based chalcogenides for infrared nonlinear optical (IR-NLO) applications to realize wide band gap (Eg > 3.0 eV) and sufficient phase-matching (PM) second-harmonic-generation intensity (deff > 1.0 × benchmark AgGaS2 ) simultaneously due to the inherent incompatibility. To address this issue, this work presents a diagonal synergetic substitution strategy for creating two new NCS quaternary Hg-based chalcogenides, AEHgGeS4 (AE = Sr and Ba), based on the centrosymmetric (CS) AEIn2 S4 . The derived AEHgGeS4 displays excellent NLO properties such as a wide Eg (≈3.04-3.07 eV), large PM deff (≈2.2-3.0 × AgGaS2 ), ultra-high laser-induced damage threshold (≈14.8-15 × AgGaS2 ), and suitable Δn (≈0.19-0.24@2050 nm), making them highly promising candidates for IR-NLO applications. Importantly, such excellent second-order NLO properties are primarily attributed to the synergistic combination of tetrahedral [HgS4 ] and [GeS4 ] functional primitives, as supported by detailed theoretical calculations. This study reports the first two NCS Hg-based materials with well-balanced comprehensive properties (i.e., Eg > 3.0 eV and deff > 1.0 × benchmark AgGaS2 ) and puts forward a new design avenue for the construction of more efficient IR-NLO candidates.
Collapse
Affiliation(s)
- Mao-Yin Ran
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Bo Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing-Xuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350002, China
| |
Collapse
|
4
|
Zhao C, Lu D, Tian X, Xu J, Zhang B, Wu K, Yu H, Zhang H. Noncentrosymmetric Na 6Pb 3P 4S 16 and Centrosymmetric K 2M IIP 2S 6 (M II = Mg and Zn) Displaying Multiple Membered-Ring Configurations and Strong Optical Anisotropy. Inorg Chem 2023; 62:21487-21496. [PMID: 38055418 DOI: 10.1021/acs.inorgchem.3c03691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Three thiophosphates including noncentrosymmetric Na6Pb3P4S16 and centrosymmetric K2MIIP2S6 (MII = Mg and Zn) were successfully synthesized in vacuum-sealed silica tubes. Note that interesting multiple six membered-rings (6-MRs) including 6-NaS6-MRs and 6-KSn-MRs (n = 6 and 7) formed by A+-centered polyhedra were discovered in the structures of title thiophosphates and these MR-composed three-dimensional (3D) tunnels show great possibility to facilitate the filling of various structural blocks (such as zero-dimensional (0D) Pb3S10 trimers or one-dimensional (1D) (MIISn)n chains). Na6Pb3P4S16 exhibits the strongest nonlinear optical (NLO) response (5.4 × AgGaS2) with phase-matching (PM) behavior among the known Pb-based PM NLO sulfides, which is much larger than that of Pb3P2S8 (3.5 × AgGaS2); it was verified that such large second harmonic generation (SHG) response in Na6Pb3P4S16 can be attributed to the huge contribution of stereochemically active PbS4 units based on the SHG-density and dipole-moment calculations. Moreover, title thiophosphates show large birefringences (Δn = 0.102-0.21), which indicates that incorporation of [P2S6] dimers or polarized PbS4 units into structures provides positive benefits for the onset of strong optical anisotropy.
Collapse
Affiliation(s)
- Chenyao Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Dazhi Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xinyu Tian
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Jingjing Xu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Bingbing Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Kui Wu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huaijin Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Zhang L, Zhao H, Liu X, Teri G, Baiyin M. Syntheses, crystal structure, and photoelectric properties of two Zn-based chalcogenidoantimonates Zn-Sb-Q (Q = S, Se). Phys Chem Chem Phys 2023; 25:29709-29717. [PMID: 37882724 DOI: 10.1039/d3cp04074g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Metal chalcogenides are a special class of semiconducting materials characterized by their rich structures and compositions, making them a promising option for a broad range of applications in the field of inorganic chemistry. However, the path forward is not without its challenges, notably in the realms of interface management and enhancing carrier concentration. To address these issues, we solvothermally synthesized two novel chalcogenidoantimonates [Zn(tren)]2Sb2Se5 (1) [tren = tris (2-aminoethyl) amine] and [Zn(tepa)H]2Sb2S6 (2) (tepa = tetraethylenepentamine) utilizing transition metal Zn by band gap optimization strategy in the visible region. Both compounds exhibited distinct zero-dimensional cluster structures, with transition metal complex cations acting as structure-directing agents. A comprehensive analysis of the electronic structure, band gap, and photocurrent response of these crystals was undertaken, revealing significantly enhanced photocatalytic properties compared to preceding studies. This research underscores the potential of antimony chalcogenides in the realm of photoelectric properties and promotes the applications of chalcogenides.
Collapse
Affiliation(s)
- Lirong Zhang
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of The Education Department of Inner Mongolia Autonomous Region College of Chemistry & Environmental Science, Inner Mongolia Normal University Hohhot, Inner Mongolia 010022, P. R. China.
| | - Huiling Zhao
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of The Education Department of Inner Mongolia Autonomous Region College of Chemistry & Environmental Science, Inner Mongolia Normal University Hohhot, Inner Mongolia 010022, P. R. China.
| | - Xin Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China.
| | - Menghe Baiyin
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of The Education Department of Inner Mongolia Autonomous Region College of Chemistry & Environmental Science, Inner Mongolia Normal University Hohhot, Inner Mongolia 010022, P. R. China.
| |
Collapse
|
6
|
Chen X, Zhou SH, Zhang C, Lin H, Liu Y. A novel bifunctional thioarsenate based on unprecedented molecular [Cd 4As 8Se 16(Se 2) 2] 8- cluster anions. Chem Commun (Camb) 2023; 59:12124-12127. [PMID: 37740276 DOI: 10.1039/d3cc03538g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Exploring and developing new functional inorganic chalcogenides with unique structures is always one of the most important missions in solid-state chemistry, especially those with molecular structures. Herein, a novel quaternary thioarsenate, Cs2CdAsSe5, is found to be based on an unprecedented molecular (poly)chalcogenide cluster architecture, which has never been discovered in inorganic chalcogenide systems. This rare windmill-like [Cd4As8Se16(Se2)2]8- cluster is made of four [CdSe4] and [As(V)Se4] tetrahedra via corner-sharing Se atoms and Se-Se bonds. Specifically, Cs2CdAsSe5 exhibits a remarkable photocurrent response and a large computationally predicted birefringence, and the origin of the optoelectronic performance and optical anisotropy is confirmed by detailed theoretical investigation.
Collapse
Affiliation(s)
- Xin Chen
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Sheng-Hua Zhou
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhang
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hua Lin
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yi Liu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Tang J, Liang F, Xing W, Tang C, Yin W, Kang B, Deng J. AgMAsS 3 (M = Cd, Hg): Double d 10 Cation-Containing Thioarsenites(III) Exhibiting High Photocurrent Response and Moderate Second Harmonic Generation. Inorg Chem 2023; 62:14739-14747. [PMID: 37648654 DOI: 10.1021/acs.inorgchem.3c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Thioarsenites(III) are an advanced functional material platform owing to the stereochemically active lone pair cations. In this paper, two novel quaternary thioarsenites(III), AgMAsS3 (M = Cd, Hg), are successfully obtained by introducing double d10 cations. In the compounds, d10 cations show a variety of different coordination modes ([AgS4] and [HgS4] in AgHgAsS3 vs [AgS5] and [CdS6] in AgCdAsS3). As a result, AgHgAsS3 and AgCdAsS3 crystallize in the noncentrosymmetric Cc space group and centrosymmetric C2/c space group, respectively. The band gaps of AgHgAsS3 and AgCdAsS3 are determined experimentally as 1.90 and 2.20 eV, respectively. Meanwhile, title compounds exhibit strong photocurrent responses. Specifically, AgHgAsS3 has a large birefringence of 0.18 at 2100 nm and a moderate second harmonic generation of (0.5 × AgGaS2). Moreover, the origin of linear and nonlinear optical responses is investigated based on first-principles calculations. This study enriches the family of MI-MII-As-Q (M = Ag, Cu; MII = Zn, Cd, Hg; Q = chalcogen) chalcogenides and helps to understand and design other multifunctional optical materials.
Collapse
Affiliation(s)
- Jian Tang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wenhao Xing
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Chunlan Tang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Wenlong Yin
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Bin Kang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Jianguo Deng
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| |
Collapse
|
8
|
Ran MY, Wang AY, Wei WB, Wu XT, Lin H, Zhu QL. Recent progress in the design of IR nonlinear optical materials by partial chemical substitution: Structural evolution and performance optimization. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Li RA, Liu QQ, Liu X, Liu Y, Jiang X, Lin Z, Jia F, Xiong L, Chen L, Wu LM. Na 2 Ba[Na 2 Sn 2 S 7 ]: Structural Tolerance Factor-Guided NLO Performance Improvement. Angew Chem Int Ed Engl 2023; 62:e202218048. [PMID: 36541587 DOI: 10.1002/anie.202218048] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The strong mutual coupling of and even the opposite change in the key parameters, such as the band gap (Eg ) and second-order harmonic generation (SHG), leads to the extreme scarcity in high-performance IR nonlinear optical (NLO) chalcogenides. Herein, we report 8 new sulfides, Na2 Ba[(Agx Na1-x )2 Sn2 S7 ] (1, x=0; 1 series, x=0.1-0.6; Na2 Ba[(Li0.58 Na0.42 )2 Sn2 S7 ], 1-0.6Li); Na2 Sr[Cu2 Sn2 S7 ] (2); and Na2 Ba[Cu2 Sn2 S7 ] (3). We use the structural tolerance factor ( t I e x p ${{t}_{I}^{exp}}$ ) to connect the chemical composition, crystal structure, and NLO properties. Guided by these correlations, a better balance between Eg and SHG is realized in 1, which exhibits a large Eg of 3.42 eV and excellent NLO properties (SHG: 1.5×AGS; laser-induced damage threshold: 12×AGS), representing the best performance among the known Hg- or As-free sulfides to date.
Collapse
Affiliation(s)
- Rui-An Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Qian-Qian Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Xin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Youquan Liu
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Xingxing Jiang
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Zheshuai Lin
- Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
| | - Fei Jia
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Lin Xiong
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China
| | - Ling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China.,Center for Advanced Materials Research, Beijing Normal University, 519087, Zhuhai, P. R. China
| | - Li-Ming Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 100875, Beijing, P. R. China.,Center for Advanced Materials Research, Beijing Normal University, 519087, Zhuhai, P. R. China
| |
Collapse
|
10
|
Song Z, Liu T, Liu Y, Zhang B, Song S, Zhao Z. Mild solvothermal syntheses and crystal structures of two quaternary hetero-transition metal sulfides RbAg5HgS4 and CsAgHgS2. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Liu Y, Xuan D, Song Z, Geng L, Zhang B, Liu T. Solvothermal syntheses, crystal structures, and photocurrent responses of quaternary sulfides RbAgZnS2 and Cs2Ag2Zn2S4. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Chen H, Ran MY, Wei WB, Wu XT, Lin H, Zhu QL. A comprehensive review on metal chalcogenides with three-dimensional frameworks for infrared nonlinear optical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Chen H, Ran M, Zhou S, Wu X, Lin H, Zhu Q. Simple yet extraordinary: super-polyhedra-built 3D chalcogenide framework of Cs5Ga9S16 with excellent infrared nonlinear optical performance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Extremely low thermal conductivity in BaSb2Se4: Synthesis, characterization, and DFT studies. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Tian X, Teri G, Shele M, E N, Qi L, Liu M, Baiyin M. Strong Photocurrent Response of Selenoarsenates With Different Transition Metal Complexes as Structure-Directing Agents. Front Chem 2022; 10:890496. [PMID: 35601544 PMCID: PMC9117718 DOI: 10.3389/fchem.2022.890496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Four selenoarsenates with different transition-metal complexes [Co(tren)2H]AsSe4 [tren = tris(2-aminoethyl)amine] (1); [Ni2(dien)4](As2Se5) (dien = diethylenetriamine) (2); [Zn(tren)]2(As2Se5) (3) and [Mn(tren)]2(As2Se5) (4) were solvothermally synthesized in a mixed solvent of organic amine and alcohol solution. The compounds 1-4 have pyramidal/tetrahedral structures (AsSe3/AsSe4), and contain transition metal (Co2+, Ni2+, Zn2+ and Mn2+) complex that form distinct zero-dimensional (0-D) clusters. Arsenic atoms form a tetrahedron in compounds 1 and 2; 1 consists of discrete tetrahedral (AsSe4) and transition metal complex [Co(tren)2]2+; 2 is composed of an anion [As2Se5]4- cluster and transition metal complex [Ni(dien)2]2+. In compounds 3 and 4, arsenic atom forms a pyramidal AsSe3 and the two pyramidal AsSe3 share a corner connection to form a dimer [As2Se5]4-; 3 is characterized as a cluster consisting of two unsaturated [Zn(tren)]2+ caiton linked by a dimer (As2Se5)4- linkage; in 4, unsaturated [Mn(tren)]2+ caiton is linked to two trigonal-bipyramidal [Mn(tren)]Se via dimer (As2Se5)4- to form [Mn(tren)]4[As4Se10] cluster. To our knowledge, [Zn(tren)]2(As2Se5) (3) is the first zinc selenoarsenate containing the (As2Se5)4- anion type. Furthermore, the Mn2+ ions adopt a trigonal-biyramidal (five-coordinate) and octahedral (six-coordinate) environment. Adding K2CO3/Cs2CO3 to the synthesis system is necessary and may act as a mineralizer. Several properties of compounds 1-4 have been characterized in our studies, in particular their strong photocurrent response characteristics under visible light irradiation.
Collapse
|
16
|
Liu C, Zhou SH, Zhang C, Shen YY, Liu XY, Lin H, Liu Y. CsCu3SbS4: rational design of a two-dimensional layered material with giant birefringence derived from Cu3SbS4. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01318a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By introducing Cs into known Cu3SbS4, we successfully obtained a novel thioantimonate, quaternary CsCu3SbS4 with an unprecedented 2D layered structure, which exhibits a giant birefringence (0.232 at 549 nm).
Collapse
Affiliation(s)
- Chang Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhang
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ya-Ying Shen
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Yan Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Yi Liu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Liu C, Yang HD, Hou PP, Xiao Y, Liu Y, Lin H. Cs 3CuAs 4Q 8 (Q = S, Se): unique two-dimensional layered inorganic thioarsenates with the lowest Cu-to-As ratio and remarkable photocurrent responses. Dalton Trans 2021; 51:904-909. [PMID: 34935849 DOI: 10.1039/d1dt03801j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inorganic chalcogenides containing cations with lone-pair electrons have attracted considerable attention because of their potential applications in photocatalysis. In this research, two new copper thioarsenates with the lowest Cu-to-As ratio in the quaternary X/Cu/As/Q (X = inorganic cations; Q = chalcogen) system, namely Cs3CuAs4Q8 (Q = S, Se), were obtained by a simple surfactant-thermal method at a low temperature. These two isostructural compounds belong to the monoclinic space group C2/c (no. 15) and are composed charge-balanced Cs+ cations and two-dimensional anionic [CuAs4Q8]3- layers. Notably, photo-electrochemical measurements indicate that Cs3CuAs4Q8 possesses a remarkable photocurrent response under simulated solar-light illumination. Further theoretical studies were performed to gain insights into the relationships between electronic structure and optical properties.
Collapse
Affiliation(s)
- Chang Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - He-Di Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,College of Chemistry, Fuzhou University, Fujian 350002, China
| | - Pei-Pei Hou
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yu Xiao
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yi Liu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hua Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. .,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
18
|
Chen H, Wei WB, Lin H, Wu XT. Transition-metal-based chalcogenides: A rich source of infrared nonlinear optical materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214154] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Xiao Y, Zhou SH, Yu R, Shen Y, Ma Z, Lin H, Liu Y. Rb 2CuSb 7S 12: Quaternary Antimony-Rich Semiconductor Featuring a Three-Dimensional Open Framework and Exhibiting an Intriguing Photocurrent Response. Inorg Chem 2021; 60:9263-9267. [PMID: 34165289 DOI: 10.1021/acs.inorgchem.1c01278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metal-rich chalcogenides with unique network architectures are rare but are of considerable interest because of their intriguing physical properties. In this work, a novel quaternary thioantimonate, Rb2CuSb7S12, has been discovered by a facile surfactant-thermal reaction. It crystallizes monoclinic space group P1̅ (No. 2) and exhibits a unique Sb-rich three-dimensional (3D) [CuSb7S12]2- framework surrounded by charge-compensating Rb+ cations. It is interesting to note that the Cu/Sb ratio of Rb2CuSb7S12 represents the lowest limit in the quaternary A/Cu/Sb/Q (A = alkali metals; Q = chalcogen) system. Moreover, Rb2CuSb7S12 shows rapid response and good reproducibility based on the photoelectrochemical tests. This study opens up opportunities for discovering the desirable physical properties in metal-rich chalcogenides.
Collapse
Affiliation(s)
- Yu Xiao
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sheng-Hua Zhou
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yaying Shen
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zuju Ma
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Hua Lin
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yi Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|