1
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
2
|
Zhang B, Gao H, Kang Y, Li X, Li Q, Zhai P, Hildebrandt D, Liu X, Wang Y, Qiao S. Molecular and Heterojunction Device Engineering of Solution-Processed Conjugated Reticular Oligomers: Enhanced Photoelectrochemical Hydrogen Evolution through High-Effective Exciton Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308535. [PMID: 38454537 PMCID: PMC11095168 DOI: 10.1002/advs.202308535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Indexed: 03/09/2024]
Abstract
Covalent organic frameworks (COFs) face limited processability challenges as photoelectrodes in photoelectrochemical water reduction. Herein, sub-10 nm benzothiazole-based colloidal conjugated reticular oligomers (CROs) are synthesized using an aqueous nanoreactor approach, and the end-capping molecular strategy to engineer electron-deficient units onto the periphery of a CRO nanocrystalline lattices (named CROs-Cg). This results in stable and processable "electronic inks" for flexible photoelectrodes. CRO-BtzTp-Cg and CRO-TtzTp-Cg expand the absorption spectrum into the infrared region and improve fluorescence lifetimes. Heterojunction device engineering is used to develop interlayer heterojunction and bulk heterojunction (BHJ) photoelectrodes with a hole transport layer, electron transport layer, and the main active layers, using a CROs/CROs-Cg or one-dimensional (1D) electron-donating polymer HP18 mixed solution via spinning coating. The ITO/CuI/CRO-TtzTp-Cg-HP18/SnO2/Pt photoelectrode shows a photocurrent of 94.9 µA cm‒2 at 0.4 V versus reversible hydrogen electrode (RHE), which is 47.5 times higher than that of ITO/Bulk-TtzTp. Density functional theory calculations show reduced energy barriers for generating adsorbed H* intermediates and increased electron affinity in CROs-Cg. Mott-Schottky and charge density difference analyses indicate enhanced charge carrier densities and accelerated charge transfer kinetics in BHJ devices. This study lays the groundwork for large-scale production of COF nanomembranes and heterojunction structures, offering the potential for cost-effective, printable energy systems.
Collapse
Affiliation(s)
- Boying Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
- Department of Chemical EngineeringFaculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfontein2028South Africa
| | - Huimin Gao
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
| | - Yazhou Kang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
| | - Xiaoming Li
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
| | - Qing Li
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
| | - Pengda Zhai
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
| | - Diane Hildebrandt
- Department of Chemical and Biochemical EngineeringRutgers UniversityPiscatawayNew Jersey08854USA
| | - Xinying Liu
- Institute for Catalysis and Energy SolutionsUniversity of South AfricaFlorida1709South Africa
| | - Yue Wang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018China
| |
Collapse
|
3
|
Qin S, Denisov N, Kim H, Schmuki P. Photocatalytic H 2 Generation: Controlled and Optimized Dispersion of Single Atom Co-Catalysts Based on Pt-TCPP Planar Adsorption on TiO 2. Angew Chem Int Ed Engl 2024; 63:e202316660. [PMID: 38237060 DOI: 10.1002/anie.202316660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 02/02/2024]
Abstract
When using single atoms (SAs) as a co-catalyst in photocatalytic H2 generation, achieving a well-dispersed, evenly distributed and adjustable SA surface density on a semiconductor surface is a challenging task. In the present work we use the planar adsorption of tetrakis-(4-carboxyphenyl)-porphyrin (TCPP) and its platinum coordinated analogue, Pt-TCPP, onto anatase TiO2 surfaces to establish a spatially controlled decoration of SAs. We show that the surface Pt SA density can be very well controlled by co-adsorption of Pt-TCPP and TCPP in the planar monolayer regime, and by adjusting the Pt-TCPP to TCPP ratio a desired well dispersed surface density of SAs up to 2.6×105 atoms μm-2 can be established (which is the most effective Pt SA loading for photocatalysis). This distribution and the SA state are maintained after a thermal treatment in air, and an optimized SA density as well as a most active form of Pt for photocatalytic H2 evolution can be established and maintained.
Collapse
Affiliation(s)
- Shanshan Qin
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Nikita Denisov
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Hyesung Kim
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander-University of Erlangen-Nuremberg, Martensstrasse 7, 91058, Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, 779 00, Czech Republic
| |
Collapse
|
4
|
Boro B, Kim N, Kim JS, Paul R, Nailwal Y, Choi Y, Seo DH, Mondal J, Ryu J. Photocatalytic H 2O 2 production from water and air using porous organic polymers. J Colloid Interface Sci 2023; 652:1784-1792. [PMID: 37683406 DOI: 10.1016/j.jcis.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Producing hydrogen peroxide (H2O2) from H2O and O2 under visible light irradiation is a promising solar-to-chemical energy conversion technology. Hydrogen peroxide has versatile applications as a green oxidant and liquid energy carrier but has been produced through energy-intensive and complex anthraquinone processes. Herein, we report the rational design of efficient and stable porous organic polymer (POP) containing redox centers, anthraquinone photocatalyst (ANQ-POP) for solar H2O2 production. ANQ-POP is readily synthesized with stable dioxin-linkages via efficient one-pot, transition-metal-free nucleophilic aromatic substitution reactions between 1,2,3,4,5,6,7,8-octafluoro-9,10-anthraquinone (OFANQ) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP). Exhibiting a fibrillar morphology, ANQ-POP boasts a high surface area of 380 m2∙g-1 and demonstrates thermal stability. With 10 % ethanol, ANQ-POP yields an H2O2 production rate of 320 μmol g-1 under visible light irradiation. Moreover, ANQ-POP alone can efficiently produce H2O2 without any photosensitizers and cocatalysts. Density functional theory calculations reveal that the quinone groups of the anthraquinone moieties can serve as redox centers for H2O2 production under light irradiation. Furthermore, unlike most conventional photocatalysts, it can produce H2O2 using only water and air by catalyzing both oxygen reduction and evolution reactions under light irradiation. Our findings provide an efficient, eco-friendly pathway for photocatalytic production of H2O2 under mild reaction conditions using a dioxin-derived POP-based photocatalyst.
Collapse
Affiliation(s)
- Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nayeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae-Seung Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra Nailwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli 140306, India
| | - Yuri Choi
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong-Hwa Seo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Renewable Carbon, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Caddeo F, Himmelstein F, Mahmoudi B, Araújo-Cordero AM, Eberhart D, Zhang H, Lindenberg T, Hähnel A, Hagendorf C, Maijenburg AW. Coating the surface of interconnected Cu 2O nanowire arrays with HKUST-1 nanocrystals via electrochemical oxidation. Sci Rep 2023; 13:13858. [PMID: 37620380 PMCID: PMC10449819 DOI: 10.1038/s41598-023-39982-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Controlling the crystallization of Metal-Organic Frameworks (MOFs) at the nanoscale is currently challenging, and this hinders their utilization for multiple applications including photo(electro)chemistry and sensors. In this work, we show a synthetic protocol that enables the preparation of highly homogeneous Cu2O@MOF nanowires standing on a conductive support with extensive control over the crystallization of the MOF nanoparticles at the surface of the Cu2O nanowires. Cu2O nanowires were first prepared via templated electrodeposition, and then partially converted into the well-known Cu-MOF HKUST-1 by pulsed electrochemical oxidation. We show that the use of PVP as a capping agent during the electrochemical oxidation of Cu2O into HKUST-1 provides control over the growth of the MOF nanocrystals on the surface of the Cu2O nanowires, and that the size of the MOF crystals obtained can be tuned by changing the concentration of PVP dissolved in the electrolyte. In addition, we propose the use of benzoic acid as an alternative to achieve control over the size of the obtained MOF nanocrystals when the use of a capping agent should be avoided.
Collapse
Affiliation(s)
- Francesco Caddeo
- Center for Innovation Competence SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle (Saale), Germany
- Center for Hybrid Nanostructures (CHyN), Institute of Nanostructure and Solid State Physics, University of Hamburg, 22607, Hamburg, Germany
| | - Florian Himmelstein
- Center for Innovation Competence SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle (Saale), Germany
| | - Behzad Mahmoudi
- Center for Innovation Competence SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle (Saale), Germany
| | - Ana María Araújo-Cordero
- Center for Innovation Competence SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle (Saale), Germany
| | - Denis Eberhart
- Center for Innovation Competence SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle (Saale), Germany
| | - Haojie Zhang
- Center for Innovation Competence SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle (Saale), Germany
- Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120, Halle (Saale), Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Titus Lindenberg
- Center for Innovation Competence SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle (Saale), Germany
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle (Saale), Germany
| | - Angelika Hähnel
- Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Straße 12, 06120, Halle (Saale), Germany
| | - Christian Hagendorf
- Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Straße 12, 06120, Halle (Saale), Germany
| | - A Wouter Maijenburg
- Center for Innovation Competence SiLi-Nano, Martin Luther University Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120, Halle (Saale), Germany.
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120, Halle (Saale), Germany.
| |
Collapse
|
6
|
Li J, Fu C, Lin Q, Zeng T, Wang D, Huang X, Song S, Li C, Dong F. Fe(VI) activation system mediated by a solar-driven TiO 2 nanotubes electrode for CLQ degradation: Performances, mechanisms and pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131274. [PMID: 36989796 DOI: 10.1016/j.jhazmat.2023.131274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Ferrate (Fe(VI), FeO42-) has been widely used in the degradation of micropollutants with the advantages of high redox potential, no secondary pollution and inhibition of disinfection byproducts. However, the low transformation of Fe(V) and/or Fe(IV) by Fe(VI) and incomplete mineralization of pollutants limit their application. In this work, we designed a photo electric cell with TiO2 nanotubes (TNTs) and Pt serving as the anode and cathode to enhance the utilization of Fe(VI) (Fe(VI)-TNTs system). TNTs accelerated the generation of •OH via hVB+ oxidation of OH- and photogenerated electrons at Pt boosted the transformation of Fe(VI) to Fe(V) and/or Fe(IV), resulting in a 22.2 % enhancement of chloroquine (CLQ) removal compared to Fe(VI) alone. The results from EPR and quenching tests showed that Fe(VI), Fe(V), Fe(IV), •OH, O2•- and hVB+ coexisted in the Fe(VI)-TNTs system, among which Fe(V) and Fe(IV) were testified as the primary reactive substances accounting for 59 % of CLQ removal. The performance tests and recycling tests demonstrated that the Fe(VI)-TNTs system maintained excellent performance in an authentic water environment. The plausible degradation pathway of CLQ oxidized in the Fe(VI)-TNTs system was proposed with nine identified oxidation products via N-C cleavage, electrophilic addition and carboxylation processes. Based on the ECOSAR calculation, the constructed reaction system allowed a decrease in acute and chronic toxicity. Our findings provide a highly efficient and cost-effective strategy to enhance Fe(VI) application for micropollutant degradation in the future.
Collapse
Affiliation(s)
- Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiufeng Lin
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinwen Huang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200433, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| |
Collapse
|
7
|
Tao CA, Li Y, Wang J. The progress of electrochromic materials based on metal–organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
The Advanced Synthesis of MOFs-Based Materials in Photocatalytic HER in Recent Three Years. Catalysts 2022. [DOI: 10.3390/catal12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the advent of metal–organic frameworks (MOFs), researchers have paid extensive attention to MOFs due to their determined structural composition, controllable pore size, and diverse physical and chemical properties. Photocatalysis, as a significant application of MOFs catalysts, has developed rapidly in recent years and become a research hotspot continuously. Various methods and approaches to construct and modify MOFs and their derivatives can not only affect the structure and morphology, but also largely determine their properties. Herein, we summarize the advanced synthesis of MOFs-based materials in the field of the photocatalytic decomposition of water to produce hydrogen in the recent three years. The main contents include the overview of the novel synthesis strategies in four aspects: internal modification and structure optimization of MOFs materials, MOFs/semiconductor composites, MOFs/COFs-based hybrids, and MOFs-derived materials. In addition, the problems and challenges faced in this direction and the future development goals were also discussed. We hope this review will help deepen the reader’s understanding and promote continued high-quality development in this field.
Collapse
|
9
|
Pd and Ni NPs@Eu-MOF, an economically advantageous nanocatalyst for C(sp2)-C(sp2) cross-coupling reactions. Key role of Ni and of the metal nanoparticles. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Liu HZ, Liu X, Li B, Luo H, Ma JG, Cheng P. Hybrid Metal-Organic Frameworks Encapsulated Hybrid Ni-Doped CdS Nanoparticles for Visible-Light-Driven CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28123-28132. [PMID: 35679596 DOI: 10.1021/acsami.2c08776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The photocatalytic production of syngas from CO2 and water is an attractive and straightforward way for both solar energy storage and sustainable development. Here, we combined the hybrid shell of a bimetallic metal-organic framework (MOF) Zn/Co-zeolitic imidazolate framework (ZIF) and the hybrid photoactive center of Ni-doped CdS nanoparticles (Ni@CdS) to construct a new "2 + 2" photocatalysis system Ni@CdS⊂Zn/Co-ZIF through a facile self-assembly process, which exhibited a double-synergic effect for visible light harvesting and CO2 conversion, leading to one of the highest photocatalytic syngas production rates and excellent recyclability. The H2/CO of syngas ratios can be readily adjusted by controlling the ratio of Zn/Co in the hybrid MOF shell.
Collapse
Affiliation(s)
- Heng-Zhi Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haiqiang Luo
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Gong Ma
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Kim N, Lee I, Choi Y, Ryu J. Molecular design of heterogeneous electrocatalysts using tannic acid-derived metal-phenolic networks. NANOSCALE 2021; 13:20374-20386. [PMID: 34731231 DOI: 10.1039/d1nr05901g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemistry could play a critical role in the transition to a more sustainable society by enabling the carbon-neutral production and use of various chemicals as well as efficient use of renewable energy resources. A prerequisite for the practical application of various electrochemical energy conversion and storage technologies is the development of efficient and robust electrocatalysts. Recently, molecularly designed heterogeneous catalysts have drawn great attention because they combine the advantages of both heterogeneous solid and homogeneous molecular catalysts. In particular, recently emerged metal-phenolic networks (MPNs) show promise as electrocatalysts for various electrochemical reactions owing to their unique features. They can be easily synthesized under mild conditions, making them eco-friendly, form uniform and conformal thin films on various kinds of substrates, accommodate various metal ions in a single-atom manner, and have excellent charge-transfer ability. In this minireview, we summarize the development of various MPN-based electrocatalysts for diverse electrochemical reactions, such as the hydrogen evolution reaction, the oxygen evolution reaction, the CO2 reduction reaction, and the N2 reduction reaction. We believe that this article provides insight into molecularly designable heterogeneous electrocatalysts based on MPNs and guidelines for broadening the applications of MPNs as electrocatalysts.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Inhui Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Choi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|