1
|
Gruzdev DA, Telegina AA, Ezhikova MA, Kodess MI, Levit GL, Krasnov VP. Synthesis of Novel Planar-Chiral Charge-Compensated nido-Carborane-Based Amino Acid. Molecules 2024; 29:4487. [PMID: 39339482 PMCID: PMC11434195 DOI: 10.3390/molecules29184487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Amino acids with unusual types of chirality and their derivatives have recently attracted attention as precursors in the synthesis of chiral catalysts and peptide analogues with unique properties. In this study, we have synthesized a new nido-carborane-based planar-chiral amino acid, in the molecule of which the amino group is directly bonded to the B(3) atom, and the carboxyl group is attached to the B(9) atom through the CH2S+(Me) fragment. 3-Amino-9-dimethylsulfonio-nido-carborane, prepared in three steps from 3-amino-closo-carborane in a high yield, was a key intermediate in the synthesis of the target planar-chiral amino acid. The carboxymethyl group at the sulfur atom was introduced by the demethylation reaction of the dimethylsulfonio derivative, followed by S-alkylation. The structure of new 3,9-disubstituted nido-carboranes was studied for the first time using NMR spectroscopy. The resonances of all boron atoms in the 11B NMR spectrum of 3-amino-9-dimethylsulfonio-nido-carborane were assigned based on the 2D NMR correlation experiments. The nido-carborane-based planar-chiral amino acid and related compounds are of interest as a basis for peptide-like compounds and chiral ligands.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| |
Collapse
|
2
|
Dethe DH, Uike A, Beeralingappa NC. Ru(II)-Catalyzed Deoxygenative Formal [3 + 1 + 2] Benzannulation of Allyl Alcohols and Acetylenediesters via C-H Activation and Selective Carbon-Carbon Triple Bond Cleavage. Org Lett 2024; 26:2013-2017. [PMID: 38437734 DOI: 10.1021/acs.orglett.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
An unprecedented Ru(II)-catalyzed deoxygenative, site-selective formal [3 + 1 + 2] benzannulation reaction for the efficient synthesis of highly substituted benzene molecules is reported. This reaction between allyl alcohols and acetylenedicarboxylate esters proceeds via cascade C-H activation, consecutive double migratory insertion with alkynes, and cycloaromatization followed by an unusual specific C-C triple bond cleavage.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amar Uike
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | |
Collapse
|
3
|
Yang QQ, Chen C, Yao D, Liu W, Liu B, Zhou J, Pan D, Peng C, Zhan G, Han B. Catalytic Atroposelective Synthesis of Axially Chiral Azomethine Imines and Neuroprotective Activity Evaluation. Angew Chem Int Ed Engl 2024; 63:e202312663. [PMID: 38032817 DOI: 10.1002/anie.202312663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Azomethine imines, as a prominent class of 1,3-dipolar species, hold great significance and potential in organic and medicinal chemistry. However, the reported synthesis of centrally chiral azomethine imines relies on kinetic resolution, and the construction of axially chiral azomethine imines remains unexplored. Herein, we present the synthesis of axially chiral azomethine imines through copper- or chiral phosphoric acid catalyzed ring-closure reactions of N'-(2-alkynylbenzylidene)hydrazides, showcasing high efficiency, mild conditions, broad substrate scope, and excellent enantioselectivity. Furthermore, the biological evaluation revealed that the synthesized axially chiral azomethine imines effectively protect dorsal root ganglia (DRG) neurons by inhibiting apoptosis induced by oxaliplatin, offering a promising therapeutic approach for chemotherapy-induced peripheral neuropathy (CIPN). Remarkably, the (S)- and (R)-atropisomers displayed distinct neuroprotective activities, underscoring the significance of axial stereochemistry.
Collapse
Affiliation(s)
- Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Chen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518060, Guangdong, China
| | - Wei Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Dabo Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
4
|
Yoshimura T, Onda KI, Matsuo JI. Asymmetric Cycloaddition Reactions of Aryne Intermediates with a Chiral Carbon-Carbon Axis: Syntheses of Axially Chiral Biaryl Compounds. Org Lett 2023. [PMID: 38055630 DOI: 10.1021/acs.orglett.3c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
An asymmetric synthesis via an axially chiral arylaryne intermediate was developed. A cycloaddition reaction with various arynophiles was used to obtain chiral biaryl compounds while preserving the enantiomeric excess (ee) of a precursor even though the reaction proceeds through an arylaryne intermediate, whose chirality decreases on a time-dependent basis. High chiral transfer from a precursor to a product was observed not only at low temperature (-78 °C) but also at room temperature.
Collapse
Affiliation(s)
- Tomoyuki Yoshimura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ken-Ichi Onda
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jun-Ichi Matsuo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Carmona JA, Rodríguez-Salamanca P, Fernández R, Lassaletta JM, Hornillos V. Dynamic Kinetic Resolution of 2-(Quinolin-8-yl)Benzaldehydes: Atroposelective Iridium-Catalyzed Transfer Hydrogenative Allylation. Angew Chem Int Ed Engl 2023; 62:e202306981. [PMID: 37389578 DOI: 10.1002/anie.202306981] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/01/2023]
Abstract
An atroposelective Ir-catalyzed dynamic kinetic resolution (DKR) of 2-(quinolin-8-yl)benzaldehydes/1-naphthaldehydes by transfer hydrogenative coupling of allyl acetate is disclosed. The allylation reaction takes place with simultaneous installation of central and axial chirality, reaching high diastereoselectivities and excellent enantiomeric excesses when ortho-cyclometalated iridium-DM-BINAP is used as the catalyst. The racemization of the substrates occurs through a designed transient Lewis acid-base interaction between the quinoline nitrogen atom and the aldehyde carbonyl group.
Collapse
Affiliation(s)
- José A Carmona
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Patricia Rodríguez-Salamanca
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
| | - Valentín Hornillos
- Instituto Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Américo Vespucio 49, 41092, Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012, Sevilla, Spain
| |
Collapse
|
6
|
Singh Chauhan AN, Mali G, Dua G, Samant P, Kumar A, Erande RD. [RhCp*Cl 2] 2-Catalyzed Indole Functionalization: Synthesis of Bioinspired Indole-Fused Polycycles. ACS OMEGA 2023; 8:27894-27919. [PMID: 37576617 PMCID: PMC10413382 DOI: 10.1021/acsomega.3c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Polycyclic fused indoles are ubiquitous in natural products and pharmaceuticals due to their immense structural diversity and biological inference, making them suitable for charting broader chemical space. Indole-based polycycles continue to be fascinating as well as challenging targets for synthetic fabrication because of their characteristic structural frameworks possessing biologically intriguing compounds of both natural and synthetic origin. As a result, an assortment of new chemical processes and catalytic routes has been established to provide unified access to these skeletons in a very efficient and selective manner. Transition-metal-catalyzed processes, in particular from rhodium(III), are widely used in synthetic endeavors to increase molecular complexity efficiently. In recent years, this has resulted in significant progress in reaching molecular scaffolds with enormous biological activity based on core indole skeletons. Additionally, Rh(III)-catalyzed direct C-H functionalization and benzannulation protocols of indole moieties were one of the most alluring synthetic techniques to generate indole-fused polycyclic molecules efficiently. This review sheds light on recent developments toward synthesizing fused indoles by cascade annulation methods using Rh(III)-[RhCp*Cl2]2-catalyzed pathways, which align with the comprehensive and sophisticated developments in the field of Rh(III)-catalyzed indole functionalization. Here, we looked at a few intriguing cascade-based synthetic designs catalyzed by Rh(III) that produced elaborate frameworks inspired by indole bioactivity. The review also strongly emphasizes mechanistic insights for reaching 1-2, 2-3, and 3-4-fused indole systems, focusing on Rh(III)-catalyzed routes. With an emphasis on synthetic efficiency and product diversity, synthetic methods of chosen polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro cages are reviewed. The newly created synthesis concepts or toolkits for accessing diazepine, indol-ones, carbazoles, and benzo-indoles, as well as illustrative privileged synthetic techniques, are included in the featured collection.
Collapse
Affiliation(s)
| | - Ghanshyam Mali
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Garima Dua
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Priya Samant
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Akhilesh Kumar
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| | - Rohan D. Erande
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| |
Collapse
|
7
|
Song J, Kim A, Hong I, Kim S, Byun WS, Lee HS, Kim HS, Lee SK, Kwon Y. Synthesis and biological evaluation of atropisomeric tetrahydroisoquinolines overcoming docetaxel resistance in triple-negative human breast cancer cells. Bioorg Chem 2023; 137:106573. [PMID: 37229969 DOI: 10.1016/j.bioorg.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Herein, atropisomeric 8-aryltetrahydroisoquinolines have been synthesized and biologically evaluated. Based on our structure-activity relationship study, a highly bioactive racemic compound has been produced, and it exhibited high antiproliferative activities against various cancer cell lines, including docetaxel-resistant breast cancer cell lines. Each enantiomer can be synthesized in an enantioselective manner by employing the chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler cyclization. An axially (R)-configured enantiomer showed a higher biological activity compared with the axially (S)-configured enantiomer. Further biological studies suggested that the (R)-enantiomer overcomes docetaxel resistance via the downregulation of signal transducer and activator of transcription 3 activation and consequently induces cellular apoptosis in docetaxel-resistant triple-negative breast cancer cell lines.
Collapse
Affiliation(s)
- Jayoung Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Intaek Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangji Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
8
|
Kamikawa K. Asymmetric reactions involving aryne intermediates. Nat Rev Chem 2023:10.1038/s41570-023-00485-y. [PMID: 37117814 DOI: 10.1038/s41570-023-00485-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
Abstract
Although arynes are usually considered fleeting intermediates, they are highly valuable synthons because they enable the introduction of aromatic rings and the simultaneous formation of new bonds at two sites. Although catalytic reactions using transition metals are excellent method for constructing complex polycyclic aromatic molecules in a single step, the use of asymmetric catalysis for the capture of arynes remains a crucial goal for the progress of aryne chemistry. Catalytic asymmetric reactions of arenes are challenging, requiring sufficient interactions between the neutral and highly reactive short-lived aryne intermediates in a stereo-controlled fashion. In addition, spontaneous decomposition, as well as side reactions, has hindered their development and, until recently, highly enantioselective reactions using arynes had remained elusive. This Review highlights asymmetric reactions using arynes, featuring diastereoselective, enantioselective and catalytic enantioselective reactions.
Collapse
|
9
|
Yao L, Gashaw Woldegiorgis A, Huang S, Wang Y, Lin X. Palladium-Catalyzed Directed Atroposelective C-H Iodination to Synthesize Axial Chiral Biaryl N-Oxides via Enantioselective Desymmetrization Strategy. Chemistry 2023; 29:e202203051. [PMID: 36263903 DOI: 10.1002/chem.202203051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 12/04/2022]
Abstract
The discovery of enantioselective desymmetrization reactions to provide practical synthesis of enantio-enriched atropisomeric biaryls is a challenging topic in the field of asymmetric catalysis. Herein, we report a highly enantioselective desymmetrization reaction for the synthesis of axially chiral biaryl N-oxides by atroposelective C-H iodination by using Pd(II) coordinated by N-benzoyl-l-phenylalanine as a chiral catalyst at room temperature. A broad range of products were obtained in high yields (up to 99 %) with excellent enantioselectivities (up to 98 % ee). The products could be synthesized in gram scale, one of which was proved to be a powerful organocatalyst in asymmetric allylation reaction. Mechanistic evidence as well as DFT calculations point towards the factors that lead to high reactivity and excellent enantiocontrol in this reaction.
Collapse
Affiliation(s)
- Linxi Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Alemayehu Gashaw Woldegiorgis
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shaoying Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yongtao Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xufeng Lin
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
10
|
Rodríguez-Salamanca P, de Gonzalo G, Carmona JA, López-Serrano J, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. Biocatalytic Atroposelective Synthesis of Axially Chiral N-Arylindoles via Dynamic Kinetic Resolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c06175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Patricia Rodríguez-Salamanca
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Joaquín López-Serrano
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
11
|
Kumar A, Sasai H, Takizawa S. Atroposelective Synthesis of C-C Axially Chiral Compounds via Mono- and Dinuclear Vanadium Catalysis. Acc Chem Res 2022; 55:2949-2965. [PMID: 36206455 DOI: 10.1021/acs.accounts.2c00545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Axially chiral compounds with rotationally constrained σ-bonds that exhibit atropisomerism are lucrative synthetic targets because of their ubiquity in functional materials and natural products. The metal complex-catalyzed enantioselective fabrication of axially chiral scaffolds has been widely investigated, and thus far, considerable progress has been made. Over the past two decades, we have developed a highly efficient strategy for constructing axially chiral biarenol derivatives using chiral mono- and dinuclear vanadium complexes. These complexes are readily prepared from vanadium(IV) salts and Schiff base ligands (generated from the condensation of (S)-tert-leucine and di- or monoformyl-(R)-1,1'-bi-2-naphthol (BINOL) derivatives) under O2 and act as highly active catalysts for highly stereoselective C-C bond formation. In particular, the vanadium complex-catalyzed enantioselective oxidative coupling of 2-naphthols 1 under oxygen or in air, which is a green oxidant, affords the desired axially chiral molecules in high yields and high stereoselectivity (up to quantitative yield and 97% ee), along with water as the sole coproduct. This coupling reaction tolerated various functional groups (such as halogens, alkoxys, and boryls) and avoided overoxidation of coupling products.The key feature of dinuclear vanadium(V) catalysts such as (Ra,S,S)-5a is an outstanding mode of the homocoupling reaction, in which a single molecule of the catalyst activates two molecules of the starting material (e.g., 2-naphthols) simultaneously. With this "dual activation" mechanism, the oxidative coupling promoted by the dinuclear catalyst proceeds in an intramolecular manner. The homocoupling rate using 5 mol % of the dinuclear vanadium(V) complex (Ra,S,S)-5a was measured to be 111 times faster than that of the mononuclear vanadium(IV) complex (S)-4a bearing a half motif of the dinuclear vanadium complex.In the case of the heterocoupling reaction utilizing two different kinds of arenol derivatives, only a starting arenol having lower oxidation potential seems to be activated by the mononuclear vanadium complex. The reaction rate of the heterocoupling using either mono- or dinuclear vanadium complexes showed no difference to give the coupling product in high yields but with a different enantioselective manner; chiral mononuclear vanadium(V) complexes showed better enantioselectivites than that of the dinuclear vanadium(V) complexes. A competing heterocoupling study and a linear correlation between the ee of the mononucaler vanadium catalyst and ee of the heterocoupling suggested that the heterocoupling involves an intermolecular radical-anion coupling pathway.In this Account, we summarize the recent advances in vanadium-catalyzed coupling reactions that produced important chiral molecules, such as biresorcinols, polycyclic biphenols, oxa[9]helicenes, bihydroxycarbazoles, and C1-symmetrical biarenols, and their coupling reaction mechanisms. By pursuing vanadium catalysis, we believe numerous additional transformations as well as a renewed interest in catalytic and chemo-, regio-, and enantioselective aryl-aryl bond constructions will be manifested.
Collapse
Affiliation(s)
- Ankit Kumar
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Shinobu Takizawa
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
12
|
Gou B, Tang Y, Lin Y, Yu L, Jian Q, Sun H, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022; 61:e202208174. [DOI: 10.1002/anie.202208174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Bo‐Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yan‐Hong Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Qing‐Song Jian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Huai‐Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
13
|
Ghosh B, Harariya MS, Mukherjee S. Catalytic Enantioselective
de novo
Construction of Chiral Arenes through Desymmetrizing Oxidative [4+2]‐Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202204523. [DOI: 10.1002/anie.202204523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Biki Ghosh
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | | | - Santanu Mukherjee
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
14
|
Gou BB, Tang Y, Lin YH, Yu L, Jian QS, Sun HR, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo-Bo Gou
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yue Tang
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yan-Hong Lin
- Northwest University College of Chemistry & Materials Science CHINA
| | - Le Yu
- Northwest University College of Chemistry & Materials Science CHINA
| | - Qing-Song Jian
- Northwest University College of Chemistry & Materials Science CHINA
| | - Huai-Ri Sun
- Northwest University College of Chemistry & Materials Science CHINA
| | - Jie Chen
- Northwest University College of Chemistry & Materials Science CHINA
| | - Ling Zhou
- Northwest University College of Chemistry & Materials Science 1 Xuefu Ave., Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
15
|
Ghosh B, Harariya MS, Mukherjee S. Catalytic Enantioselective de novo Construction of Chiral Arenes through Desymmetrizing Oxidative [4+2]‐Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biki Ghosh
- IISc: Indian Institute of Science Department of Organic Chemistry C V Raman Road 560012 Bangalore INDIA
| | - Mahesh Singh Harariya
- IISc: Indian Institute of Science Department of Organic Chemistry C V Raman Road 560012 Bangalore INDIA
| | - Santanu Mukherjee
- Indian Institute of Science Department of Organic Chemistry C V Raman Avenue 560012 Bangalore INDIA
| |
Collapse
|
16
|
Xu X, Gunasekaran S, Renken S, Ripani L, Schollmeyer D, Kim W, Marcaccio M, Musser A, Narita A. Synthesis and Characterizations of 5,5'-Bibenzo[rst]pentaphene with Axial Chirality and Symmetry-Breaking Charge Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200004. [PMID: 35156332 PMCID: PMC9259715 DOI: 10.1002/advs.202200004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/23/2022] [Indexed: 05/31/2023]
Abstract
Exploration of novel biaryls consisting of two polycyclic aromatic hydrocarbon (PAH) units can be an important strategy toward further developments of organic materials with unique properties. In this study, 5,5'-bibenzo[rst]pentaphene (BBPP) with two benzo[rst]pentaphene (BPP) units is synthesized in an efficient and versatile approach, and its structure is unambiguously elucidated by X-ray crystallography. BBPP exhibits axial chirality, and the (M)- and (P)-enantiomers are resolved by chiral high-performance liquid chromatography and studied by circular dichroism spectroscopy. These enantiomers have a relatively high isomerization barrier of 43.6 kcal mol-1 calculated by density functional theory. The monomer BPP and dimer BBPP are characterized by UV-vis absorption and fluorescence spectroscopy, cyclic voltammetry, and femtosecond transient absorption spectroscopy. The results indicate that both BPP and BBPP fluoresce from a formally dark S1 electronic state that is enabled by Herzberg-Teller intensity borrowing from a neighboring bright S2 state. While BPP exhibits a relatively low photoluminescence quantum yield (PLQY), BBPP exhibits a significantly enhanced PLQY due to a greater S2 intensity borrowing. Moreover, symmetry-breaking charge transfer in BBPP is demonstrated by spectroscopic investigations in solvents of different polarity. This suggests high potential for singlet fission in such π-extended biaryls through appropriate molecular design.
Collapse
Affiliation(s)
- Xiushang Xu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigami‐gunOkinawa904‐0495Japan
| | - Suman Gunasekaran
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Scott Renken
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Lorenzo Ripani
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 2Bologna40126Italy
| | - Dieter Schollmeyer
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14Mainz55128Germany
| | - Woojae Kim
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Massimo Marcaccio
- Dipartimento di Chimica “Giacomo Ciamician”Università di Bolognavia Selmi 2Bologna40126Italy
| | - Andrew Musser
- Department of Chemistry & Chemical BiologyCornell UniversityIthacaNY14853USA
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigami‐gunOkinawa904‐0495Japan
| |
Collapse
|
17
|
Li HH, Zhang JY, Li S, Wang YB, Cheng JK, Xiang SH, Tan B. Asymmetric synthesis of binaphthyls through photocatalytic cross-coupling and organocatalytic kinetic resolution. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Rodríguez‐Salamanca P, Fernández R, Hornillos V, Lassaletta JM. Asymmetric Synthesis of Axially Chiral C-N Atropisomers. Chemistry 2022; 28:e202104442. [PMID: 35191558 PMCID: PMC9314733 DOI: 10.1002/chem.202104442] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Molecules with restricted rotation around a single bond or atropisomers are found in a wide number of natural products and bioactive molecules as well as in chiral ligands for asymmetric catalysis and smart materials. Although most of these compounds are biaryls and heterobiaryls displaying a C-C stereogenic axis, there is a growing interest in less common and more challenging axially chiral C-N atropisomers. This review offers an overview of the various methodologies available for their asymmetric synthesis. A brief introduction is initially given to contextualize these axially chiral skeletons, including a historical background and examples of natural products containing axially chiral C-N axes. The preparation of different families of C-N based atropisomers is then presented from anilides to chiral five- and six-membered ring heterocycles. Special emphasis has been given to modern catalytic asymmetric strategies over the past decade for the synthesis of these chiral scaffolds. Applications of these methods to the preparation of natural products and biologically active molecules will be highlighted along the text.
Collapse
Affiliation(s)
- Patricia Rodríguez‐Salamanca
- Instituto de Investigaciones Químicas (CSIC-US) and Centro deInnovación en Química Avanzada (ORFEO-CINQA)C/ Américo Vespucio, 4941092SevillaSpain
| | - Rosario Fernández
- Departamento de Química OrgánicaUniversidad de Sevilla) and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González, 141012SevillaSpain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro deInnovación en Química Avanzada (ORFEO-CINQA)C/ Américo Vespucio, 4941092SevillaSpain
- Departamento de Química OrgánicaUniversidad de Sevilla) and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González, 141012SevillaSpain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro deInnovación en Química Avanzada (ORFEO-CINQA)C/ Américo Vespucio, 4941092SevillaSpain
| |
Collapse
|
19
|
Wang Y, Yang Y, Xu S, Huang A, Chen L, Xie Y, Liu P, Hong L, Li G. Organocatalytic enantioselective construction of axially chiral (1 H)-isochromen-1-imines. Org Biomol Chem 2022; 20:3277-3282. [PMID: 35373230 DOI: 10.1039/d2ob00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocycloalkenyl atropisomers, derived from biaryl atropisomers and axially chiral styrenes, have emerged as a new class of nonbiaryl C-C atropisomers due to the benefit in improving the pharmacological activity and structural diversity. This paper proposes an intramolecular annulation strategy for constructing the heterocycloalkenyl atropisomers (1H)-isochromen-1-imines by organocatalysis. Various heterocycloalkenyl atropisomers (1H)-isochromen-1-imines were prepared in good to excellent yields with excellent enantioselectivity (up to 98% ee), and could be easily converted to atropisomeric lactones isocoumarins.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| | - Yang Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shiyu Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Aima Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lu Chen
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| | - Yubao Xie
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| | - Pengyutian Liu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guofeng Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
20
|
Xu S, Huang A, Yang Y, Wang Y, Zhang M, Sun Z, Zhao M, Wei Y, Li G, Hong L. Organocatalytic Enantioselective Construction of Spiroketal Lactones Bearing Axial and Central Chirality via an Asymmetric Domino Reaction. Org Lett 2022; 24:2978-2982. [PMID: 35380447 DOI: 10.1021/acs.orglett.2c00845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic asymmetric synthesis of chiral compounds with multiple stereogenic elements via a single catalytic process is challenging. This paper proposes a domino asymmetric electrophilic halocyclization strategy for constructing heterocycloalkenyl atropisomeric spiroketal lactones. A single catalyst was utilized to realize two independent stereodetermining steps. Various spiroketal lactones containing both chiral axes and chiral centers were prepared in excellent yields with excellent enantioselectivity and diastereoselective (up to 99% ee and >20:1 dr).
Collapse
Affiliation(s)
- Shiyu Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Aima Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yang Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Ying Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ming Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Zhihui Sun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Man Zhao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yuanlin Wei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Guofeng Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
21
|
Organocatalytic dynamic kinetic resolution of N-arylindole lactams: atroposelective construction of axially chiral amino acids bearing a C-N chiral axis. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1209-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Cheng F, Duan DS, Jiang LM, Li BS, Wang JX, Zhou YJ, Jiao HY, Wu T, Zhu DY, Wang SH. Copper-Catalyzed Asymmetric Ring-Opening Reaction of Cyclic Diaryliodonium Salts with Imides. Org Lett 2022; 24:1394-1399. [PMID: 35132855 DOI: 10.1021/acs.orglett.2c00247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient copper-catalyzed asymmetric ring-opening reaction of diaryliodonium salts with imides has been developed, affording a wide range of axially chiral 2-imidobiaryl compounds with excellent enantioselectivities and better convertibility. The potential utility of the current method has been supported by the synthesis of two known chiral ligands with better efficiency, which would be of great significance to the development of other catalytic asymmetric reactions.
Collapse
Affiliation(s)
- Fu Cheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Dong-Sen Duan
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Li-Ming Jiang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Bao-Sheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Jia-Xuan Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Yu-Jia Zhou
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - He-Yu Jiao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Tao Wu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| |
Collapse
|
23
|
Wang G, Huang J, Zhang J, Fu Z. Catalytically atroposelective ring-opening of configurationally labile compounds to access axially chiral biaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this minireview, we evaluate and summarize the construction of axially chiral biaryls, and briefly state our personal perspectives on the future advancement of this direction.
Collapse
Affiliation(s)
- Guanjie Wang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenqian Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
24
|
Li C, Zuo WF, Zhou J, Zhou WJ, Wang M, Li X, Zhan G, Huang W. Catalytic asymmetric synthesis of 3,4'-indole-pyrazole derivatives featuring axially chiral bis-pentatomic heteroaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00021k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The atroposelective synthesis of bis-pentatomic heteroaryl systems is challenging due to the low rotation barrier and configurational instability of the 5,5-ring system. 3,4'-Indole-pyrazole is a bis-pentatomic heteroaryl scaffold existing in...
Collapse
|
25
|
He S, Wang J, Zheng J, Luo QQ, Leng H, Zheng S, Peng C, Han B, Zhan G. Organocatalytic (5+1) benzannulation of Morita–Baylis–Hillman carbonates: synthesis of multisubstituted 4-benzylidene pyrazolones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01949c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DABCO-catalyzed (5+1) cycloaddition of MBH carbonate undergoes an α-double deprotonation pathway to de novo assemble the benzene ring.
Collapse
Affiliation(s)
- Shurong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jinfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qing-Qing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Haijun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sixiang Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
26
|
Chen JF, Shi J, Yin C, Cui X, Li G, Tang Z, Zhao J. Synthesis of axially chiral N-aryl benzimidazoles via chiral phosphoric acid catalyzed enantioselective oxidative aromatization. NEW J CHEM 2022. [DOI: 10.1039/d1nj06092a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hantzsch ester and benzothiazoline have been extensively used as H2 donors in enantioselective transfer hydrogenation of C=N bond during the past several decades. However, the corresponding Hantzsch pyridine and benzothiazoles...
Collapse
|
27
|
Mao Q, Zhao Q, Li MZ, Qin R, Luo ML, Xue J, Chen BH, Leng HJ, Peng C, Zhan G, Han B. Construction of CF 3-Functionalized Fully Substituted Benzonitriles through Rauhut-Currier Reaction Initiated [3 + 3] Benzannulation. J Org Chem 2021; 86:14844-14854. [PMID: 34596408 DOI: 10.1021/acs.joc.1c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Though numerous cyanation reactions have been developed for the synthesis of benzonitriles, the construction of valuable fully substituted benzonitriles is still a challenging task. Herein, we reported a tertiary amine-catalyzed [3 + 3]-benzannulation for the green synthesis of CF3-functionalized fully substituted benzonitriles. This strategy features exclusive chemoselectivity, high atom-economy, and good step-economy with environment-friendly reagents and mild conditions. Unique triphenyl-substituted dicyanobenzoate products could be rapidly constructed using this method. The practicality and reliability of this reaction were proved by the successful scale-up synthesis. A mechanistic study indicates that the [3 + 3]-benzannulation was initiated by an intermolecular Rauhut-Currier reaction.
Collapse
Affiliation(s)
- Qing Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Mu-Ze Li
- Department of Chemistry, University of British Columbia, Vabcouver, British Columbia V6T 1Z1, Canada
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jing Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Hai-Jun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
28
|
Chen LP, Chen JF, Zhang YJ, He XY, Han YF, Xiao YT, Lv GF, Lu X, Teng F, Sun Q, Li JH. Atroposelective carbonylation of aryl iodides with amides: facile synthesis of enantioenriched cyclic and acyclic amides. Org Chem Front 2021. [DOI: 10.1039/d1qo01147b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An unprecedented palladium-catalyzed asymmetric carbonylation of ArI with carbon monoxide (CO) to expand a class of atroposelective cyclic and acyclic amides in good yields with high enantioselectivities has been reported.
Collapse
Affiliation(s)
- Li-Ping Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jiang-Fei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yu-Jiao Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xing-Yi He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ya-Fei Han
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yu-Ting Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Gui-Fen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|