1
|
Zuber J, Pickl T, Heidecker AA, Baron M, Jandl C, Pöthig A. Rim-brominated pillarplexes and their assembly via self-sorting. Dalton Trans 2024; 53:19116-19120. [PMID: 39587919 DOI: 10.1039/d4dt02953d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
We report rim-brominated pillarplexes, new examples of functionalised supramolecular organometallic complexes (SOCs). The bromide atoms can be introduced to the established pristine ligand precursor, demonstrating late-stage diversification of our ligand platform. SC-XRD/ED-derived crystal structures of precursor and pillarplex salts are reported along with competitive assembly experiments of the Ag(I) pillarplex, showing narcissistic self-sorting behavior.
Collapse
Affiliation(s)
- Julian Zuber
- Catalysis Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, 85748 Garching bei München, Germany.
| | - Thomas Pickl
- Catalysis Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, 85748 Garching bei München, Germany.
| | - Alexandra A Heidecker
- Catalysis Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, 85748 Garching bei München, Germany.
| | - Marco Baron
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Christian Jandl
- ELDICO Scientific AG, Switzerland Innovation Park Basel Area, Hegenheimermattweg 167A, 4123 Allschwil, Switzerland
| | - Alexander Pöthig
- Catalysis Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, 85748 Garching bei München, Germany.
| |
Collapse
|
2
|
Barriendos I, Crespo O, Gimeno MC. Understanding the Role of NHC Ditopic Ligand Substituents in the Molecular Diversity and Emissive Properties of Silver Complexes. Inorg Chem 2024; 63:21699-21710. [PMID: 39473062 PMCID: PMC11558669 DOI: 10.1021/acs.inorgchem.4c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 11/12/2024]
Abstract
Silver bis(carbene) complexes featuring ditopic N-heterocyclic carbene (NHC) ligands have been synthesized which enable the assembly of supramolecular architectures via reaction with silver triflate. Through a systematic exploration of crystal structures and emissive properties, this study investigates the impact of the substituents on the NHC ditopic ligands [R-Im-2-Z-py], where R = Me, benzyl (Bz), or 2-naphthylmethyl (NaphCH2), and Z = H or Cl in the structural framework and emissive properties observed in the silver bis(carbene) or polynuclear species. Remarkably diverse structural motifs emerge in both of them, predominantly influenced by the choice of R wingtip and second by the Z substituent. Also the emissive quantum yield of the complexes is mostly governed by the selection of the R wingtip and further modulated by the Z substituent. Several of the mono and polynuclear complexes exhibit complex emissive profiles, including the observation of dual emission phenomena. Particularly noteworthy is the complex [Ag(NHC)]2]OTf (R = Bz, Z = Cl), which demonstrates an exceptionally intense single blue emission with a remarkable solid-state quantum yield (Φ) of 24%.
Collapse
Affiliation(s)
- Irati Barriendos
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| | - Olga Crespo
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica,
Instituto de Síntesis Química y Catálisis Homogénea
(ISQCH), Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
| |
Collapse
|
3
|
Heidecker AA, Stasi M, Spears A, Boekhoven J, Pöthig A. Silver and Gold Pillarplex Pseudorotaxanes from α,ω-Dicarboxylic Acids. Chempluschem 2023; 88:e202300234. [PMID: 37306394 DOI: 10.1002/cplu.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
A series of pseudorotaxanes with supramolecular organometallic silver(I) and gold(I) pillarplexes acting as rings and different α,ω-dicarboxylic acids as axle components are reported. The successful formation of the host-guest complexes is shown by 1 H NMR spectroscopy and respective NMR titration. Additional evaluation with ITC titration experiments yielded dissociation constants (Kd ) ranging from 10-5 to 10-7 M. Single-crystal X-Ray diffraction analysis reveals a particularly exciting pore alignment of different examples in the solid state depending on the length of the guest. The work highlights, that dicarboxylic acids can penetrate the tight tubular pillarplex pore, paving the way to future mechanically interlocked molecules and materials.
Collapse
Affiliation(s)
- Alexandra A Heidecker
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center (CRC), Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Michele Stasi
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Supramolecular Chemistry Lichtenbergstraße 4, 85748, Garching, Germany
| | - Alexander Spears
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center (CRC), Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Job Boekhoven
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Supramolecular Chemistry Lichtenbergstraße 4, 85748, Garching, Germany
| | - Alexander Pöthig
- Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Catalysis Research Center (CRC), Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| |
Collapse
|
4
|
Craig JS, Melidis L, Williams HD, Dettmer SJ, Heidecker AA, Altmann PJ, Guan S, Campbell C, Browning DF, Sigel RKO, Johannsen S, Egan RT, Aikman B, Casini A, Pöthig A, Hannon MJ. Organometallic Pillarplexes That Bind DNA 4-Way Holliday Junctions and Forks. J Am Chem Soc 2023. [PMID: 37318835 DOI: 10.1021/jacs.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Holliday 4-way junctions are key to important biological DNA processes (insertion, recombination, and repair) and are dynamic structures that adopt either open or closed conformations, the open conformation being the biologically active form. Tetracationic metallo-supramolecular pillarplexes display aryl faces about a cylindrical core, an ideal structure to interact with open DNA junction cavities. Combining experimental studies and MD simulations, we show that an Au pillarplex can bind DNA 4-way (Holliday) junctions in their open form, a binding mode not accessed by synthetic agents before. Pillarplexes can bind 3-way junctions too, but their large size leads them to open up and expand that junction, disrupting the base pairing, which manifests in an increased hydrodynamic size and lower junction thermal stability. At high loading, they rearrange both 4-way and 3-way junctions into Y-shaped forks to increase the available junction-like binding sites. Isostructural Ag pillarplexes show similar DNA junction binding behavior but lower solution stability. This pillarplex binding contrasts with (but complements) that of metallo-supramolecular cylinders, which prefer 3-way junctions and can rearrange 4-way junctions into 3-way junction structures. The pillarplexes' ability to bind open 4-way junctions creates exciting possibilities to modulate and switch such structures in biology, as well as in synthetic nucleic acid nanostructures. In human cells, the pillarplexes do reach the nucleus, with antiproliferative activity at levels similar to those of cisplatin. The findings provide a new roadmap for targeting higher-order junction structures using a metallo-supramolecular approach, as well as expanding the toolbox available to design bioactive junction binders into organometallic chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Roland K O Sigel
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | - Silke Johannsen
- Department of Chemistry, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Zhao Z, Han X, Liu K, Zhao L, Liu Q. Six Fluorene-Based N-Heterocyclic Carbene Silver(I) Complexes: Structural Study and Recognition for Cu 2+. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhixiang Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xingjun Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Kun Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Lixuan Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Qingxiang Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
6
|
Heidecker AA, Bohn M, Pöthig A. Crystal structure of a hexacationic Ag(I)-pillarplex-dodecyl-diammonium pseudo-rotaxane as terephthalate salt. Z KRIST-CRYST MATER 2022. [DOI: 10.1515/zkri-2021-2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A new pseudo-rotaxane, consisting of a tubular, organometallic Ag-pillarplex ring and dodecyldiammonium axle component, is introduced and investigated towards potential non-covalent interactions by Full Interaction Maps (FIMs). FIMs predict regions of probable supramolecular interactions solely at the organic ligands, namely the rim and the aromatic rings of the pillarplex. The results were compared to structural parameters experimentally obtained by single-crystal X-ray diffraction. The pseudo-rotaxane was crystallized as a hydrated terephthalate salt, and the molecular and the crystal structure are discussed. The experimentally observed interactions are quantified using Hirshfeld surface analysis. In contrast to the FIMs prediction, four different interaction modes can be experimentally observed in the solid-state: encapsulation of a guest molecule, hydrogen bonding, π- and metal interactions.
Collapse
Affiliation(s)
- Alexandra A. Heidecker
- Department of Chemistry & Catalysis Research Center , Technische Universität München , Ernst-Otto-Fischer-Straße 1, D-85748 Garching , Germany
| | - Moritz Bohn
- Department of Chemistry & Catalysis Research Center , Technische Universität München , Ernst-Otto-Fischer-Straße 1, D-85748 Garching , Germany
| | - Alexander Pöthig
- Department of Chemistry & Catalysis Research Center , Technische Universität München , Ernst-Otto-Fischer-Straße 1, D-85748 Garching , Germany
| |
Collapse
|
7
|
Zhang L, Sun LY, Chang JP, Xie HY, Zhang YW, Zhang YF, Han YF. A trefoil-shaped macrocycle with 12 imidazolium cations. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Kariuki BM, Platts JA, Newman PD. A hybrid bipy-NHC ligand for the construction of group 11 mixed-metal bimetallic complexes. RSC Adv 2021; 11:34170-34173. [PMID: 35497314 PMCID: PMC9042343 DOI: 10.1039/d1ra06581e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022] Open
Abstract
An asymmetric bipy/NHC ligand L has been used to construct Au/Au, Au/Ag and Au/Cu bimetallic complexes through prior coordination of the NHC to Au(i) and subsequent introduction of the second group 11 metal ion at the bipy donor of the hybrid ligand. The complex [Au(κC-L)2]BF4,1, has been used as the precursor for the formation of [AuAg(κ-C Au,κ2-N,N'Ag-1)2](BF4)2, 2a, [AuCu(κ-C Au,κ2-N,N'Cu-1)2](BF4)2, 2b and [AuAu'(κ-CAu/Au',κ1-NAu/Au'-1)2](BF4)2, 3.
Collapse
Affiliation(s)
- Benson M Kariuki
- School of Chemistry, Cardiff University Park Place Cardiff CF10 3AT Wales UK
| | - James A Platts
- School of Chemistry, Cardiff University Park Place Cardiff CF10 3AT Wales UK
| | - Paul D Newman
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University Park Place Cardiff CF10 3AT Wales UK
| |
Collapse
|
9
|
Investigation of Solvatomorphism and Its Photophysical Implications for Archetypal Trinuclear Au 3(1-Methylimidazolate) 3. Molecules 2021; 26:molecules26154404. [PMID: 34361569 PMCID: PMC8348911 DOI: 10.3390/molecules26154404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
A new solvatomorph of [Au3(1-Methylimidazolate)3] (Au3(MeIm)3)—the simplest congener of imidazolate-based Au(I) cyclic trinuclear complexes (CTCs)—has been identified and structurally characterized. Single-crystal X-ray diffraction revealed a dichloromethane solvate exhibiting remarkably short intermolecular Au⋯Au distances (3.2190(7) Å). This goes along with a dimer formation in the solid state, which is not observed in a previously reported solvent-free crystal structure. Hirshfeld analysis, in combination with density functional theory (DFT) calculations, indicates that the dimerization is generally driven by attractive aurophilic interactions, which are commonly associated with the luminescence properties of CTCs. Since Au3(MeIm)3 has previously been reported to be emissive in the solid-state, we conducted a thorough photophysical study combined with phase analysis by means of powder X-ray diffraction (PXRD), to correctly attribute the photophysically active phase of the bulk material. Interestingly, all investigated powder samples accessed via different preparation methods can be assigned to the pristine solvent-free crystal structure, showing no aurophilic interactions. Finally, the observed strong thermochromism of the solid-state material was investigated by means of variable-temperature PXRD, ruling out a significant phase transition being responsible for the drastic change of the emission properties (hypsochromic shift from 710 nm to 510 nm) when lowering the temperature down to 77 K.
Collapse
|