1
|
Dai JL, Wang T, Hao Y, Zhang Y, Yan S, Li G, Wang JY. Photoredox-Catalyzed Alkynylation of C(sp 3)-H Bonds Adjacent to a Nitrogen Atom of Tertiary Amines with Alkynyl Bromides. J Org Chem 2024; 89:15901-15913. [PMID: 39395008 DOI: 10.1021/acs.joc.4c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
A novel and robust alkynylation of C(sp3)-H bonds adjacent to a nitrogen atom of tertiary amines with alkynyl bromides as radical alkynylating reagents has been realized under visible-light irradiation. A range variety of tertiary amines including N-arylamines and N-alkylamine have been coupled with both aromatic and aliphatic alkynyl bromides to furnish 51 examples of propargylamines in moderate to excellent yields (31-80% yields). The possible mechanism was a radical addition-elimination process based on preliminary mechanistic studies.
Collapse
Affiliation(s)
- Jin-Long Dai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Tao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yan Hao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yue Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Shenghu Yan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jia-Yin Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
2
|
Duan Y, Zhang K, Xing T, Bai Y, Li J, Yang X, Zhao Y, Zhang Q. Metal-free photoinduced generation and alkynylation of carbamoyl radicals: a facile synthesis of alkynyl amides. Chem Commun (Camb) 2024; 60:9582-9585. [PMID: 39140217 DOI: 10.1039/d4cc01619j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A metal-free photoinduced alkynylation of carbamoyl radicals with hypervalent iodine(III) reagents for a facile synthesis of alkynyl amides is described. This protocol features good functional group tolerance and a broad substrate scope for direct synthesis of alkynyl amide derivatives in good to excellent yields under mild and redox-neutral reaction conditions. The synthetic application is demonstrated by the late-stage installation of alkynyl amides into natural products and active pharmaceutical relevant molecules. The mechanistic studies indicated the simultaneous existence of photoredox catalytic and direct photoexcited processes, and the quantum yields confirmed the occurrence of the radical chain propagation process.
Collapse
Affiliation(s)
- Yurong Duan
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Tongtong Xing
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Yubin Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Jinfeng Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Xiaojun Yang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Yu Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Qiuyu Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
3
|
He J, Gong X, Li Y, Zhao Q, Zhu C. Synthesis and Photocatalytic sp 3 C-H Bond Functionalization of Salen-Ligand-Supported Uranyl(VI) Complexes. Molecules 2024; 29:4077. [PMID: 39274925 PMCID: PMC11397425 DOI: 10.3390/molecules29174077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Recent years have seen increasing interest in uranyl(VI) photocatalysis. In this study, uranyl complexes were successfully synthesized from ligands L1-L6 and UO2(NO3)2·6H2O under reflux conditions, yielding products 1-6 with yields ranging from 30% to 50%. The complexes were thoroughly characterized using NMR spectroscopy, single-crystal X-ray diffraction, and elemental analysis. The results indicate that complexes 1-5 possess a pentagonal bipyramidal geometry, whereas complex 6 exhibits an octahedral structure. The photocatalytic properties of these novel complexes for sp3 C-H bond functionalization were explored. The results demonstrate that complex 4 functions as an efficient photocatalyst for converting C-H bonds to C-C bonds via hydrogen atom transfer under blue light irradiation.
Collapse
Affiliation(s)
- Jialu He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingxing Gong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yafei Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianyi Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Zhang SY, Tang SB, Jiang YX, Zhu RY, Wang ZX, Long B, Su J. Mechanism of the Visible-Light-Promoted C(sp 3)-H Oxidation via Uranyl Photocatalysis. Inorg Chem 2024; 63:2418-2430. [PMID: 38264973 DOI: 10.1021/acs.inorgchem.3c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Uranyl cation, as an emerging photocatalyst, has been successfully applied to synthetic chemistry in recent years and displayed remarkable catalytic ability under visible light. However, the molecular-level reaction mechanisms of uranyl photocatalysis are unclear. Here, we explore the mechanism of the stepwise benzylic C-H oxygenation of typical alkyl-substituted aromatics (i.e., toluene, ethylbenzene, and cumene) via uranyl photocatalysis using theoretical and experimental methods. Theoretical calculation results show that the most favorable reaction path for uranyl photocatalytic oxidation is as follows: first, hydrogen atom transfer (HAT) from the benzyl position to form a carbon radical ([R•]), then oxygen addition ([R•] + O2 → [ROO•]), then radical-radical combination ([ROO•] + [R•] → [ROOR] → 2[RO•]), and eventually [RO•] reduction to produce alcohols, of which 2° alcohol would further be oxidized to ketones and 1° would be stepwise-oxygenated to acids. The results of the designed verification experiments and the capture of reactive intermediates were consistent with those of theoretical calculations and the previously reported research that the active benzylic C-H would be stepwise-oxygenated in the presence of uranyl. This work deepens our understanding of the HAT mechanism of uranyl photocatalysis and provides important theoretical support for the relevant application of uranyl photocatalysts in organic transformation.
Collapse
Affiliation(s)
- Shu-Yun Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Song-Bai Tang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yan-Xin Jiang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ru-Yu Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zi-Xin Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Bo Long
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, P. R. China
| | - Jing Su
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
5
|
Chen CL, Wang HY, Weng ZZ, Long LS, Zheng LS, Kong XJ. Uranyl Polyoxotungstate Cluster for Visible-Light-Driven Heterogeneous C-H Selective Fluorination. Inorg Chem 2023; 62:17041-17045. [PMID: 37819767 DOI: 10.1021/acs.inorgchem.3c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The selective fluorination of C-H bonds at room temperature using heterogeneous visible-light catalysts is both interesting and challenging. Herein, we present the heterogeneous sandwich-type structure uranyl-polyoxotungstate cluster Na17{Na@[(SbW9O33)2(UO2)6(PO3OH)6]}·46H2O (denoted as U6P6) to regulate the selective fluorination of the C-H bond under visible light and room temperature. This is the first report in which uranyl participates in the fluorination reaction in the form of an insoluble substance. U6P6 is capable of the effective selective fluorination of cycloalkanes and the recyclability of the photocatalyst due to the synergistic effect of multiple uranyl (UO2)2+ and the insolubility of organic reagents of polyoxotungstate. In situ electron paramagnetic resonance spectroscopy captured the generation of cycloalkane radicals during the photoreaction, confirming the mechanism of direct hydrogen atom transfer.
Collapse
Affiliation(s)
- Chao-Long Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Hai-Ying Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Zhen-Zhang Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen,361005, China
| |
Collapse
|
6
|
Ma X, Wang L, Meng X, Li W, Wang Q, Gu Y, Qiu L. NHC-mediated photocatalytic deoxygenation of alcohols for the synthesis of internal alkynes via a Csp 3-Csp coupling reaction. Org Biomol Chem 2023; 21:6693-6696. [PMID: 37548245 DOI: 10.1039/d3ob01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
NHC-mediated deoxygenation of alcohols under photocatalytic conditions is described. The process provides various alkyl radicals, which can react with 1-bromoalkyne via Csp3-Csp coupling to afford internal alkynes in moderate to good yields. The method offers a new and convenient approach to synthesize internal alkynes.
Collapse
Affiliation(s)
- Xueji Ma
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Liujie Wang
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Xiaoqing Meng
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Wenbo Li
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Qin Wang
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Yuke Gu
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Lingna Qiu
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| |
Collapse
|
7
|
Maity B, Dutta S, Cavallo L. The mechanism of visible light-induced C-C cross-coupling by C sp3-H bond activation. Chem Soc Rev 2023; 52:5373-5387. [PMID: 37464786 DOI: 10.1039/d2cs00960a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Csp3-C cross-coupling by activating Csp3-H bonds is a dream reaction for the chemical community, and visible light-induced transition metal-catalysis under mild reaction conditions is considered a powerful tool to achieve it. Advancement of this research area is still in its infancy because of the chemical and technical complexity of this catalysis. Mechanistic studies illuminating the operative reaction pathways can rationalize the increasing amount of experimental catalysis data and provide the knowledge allowing faster and rational advances in the field. This goal requires complementary experimental and theoretical mechanistic studies, as each of them is unfit to clarify the operative mechanisms alone. In this tutorial review we summarize representative experimental and computational mechanistic studies, highlighting weaknesses, strengths, and synergies between the two approaches.
Collapse
Affiliation(s)
- Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
8
|
Lv S, Li Q, Sang JW, Zhang Y, Wang J, Zhang WD. Uranyl nitrate as a recyclable homogeneous photocatalyst for selective cross-coupling of N-substituted amines and indoles. RSC Adv 2023; 13:11929-11937. [PMID: 37077263 PMCID: PMC10108382 DOI: 10.1039/d3ra01037f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
A homogeneous photocatalytic recyclable system for the selective radical-radical cross-coupling of N-substituted amines and indoles has been established. This system could conduct in water or acetonitrile, featuring the reuse of uranyl nitrate as the recyclable photocatalyst via a simple extraction. With this mild strategy in hand, good to excellent yields of cross-coupling products could be achieved even under the irradiation of sunlight, including 26 natural product derivatives and 16 natural product inspired re-engineered compounds. A radical-radical cross-coupling mechanism was newly proposed based on experimental evidence and reported literature. This strategy has been also applied to a gram scale synthesis to demonstrate its practical utility.
Collapse
Affiliation(s)
- Shuaipeng Lv
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Ji-Wei Sang
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Pharmacy, Second Military Medical University Shanghai 200433 China
| |
Collapse
|
9
|
Wu H, Chen S, Xiao D, Li F, Zhou K, Yin X, Liu C, He X, Shang Y. Visible-Light-Mediated Deacylated Alkynylation of Unstrained Ketone. Org Lett 2023; 25:1166-1171. [PMID: 36786500 DOI: 10.1021/acs.orglett.3c00145] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Deconstructive alkynylation of an unstrained ketone catalyzed by an organic photocatalyst under blue light irradiation is reported for the first time. A broad substrate scope with up to 63 examples, excellent functional group tolerance, and gram scale reaction demonstrated the practicality of this novel alkynylation method. The dihydroquinazolinone derivative of trifluoroacetophenone had been proved to have potential as a novel trifluoromethylation reagent after working well for the trifluoromethylation reaction with various alkynyl bromides.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Dengmengfei Xiao
- Shenzhen Grubbs Institute and Department of Chemistry, Guang-dong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Feng Li
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kaiyuan Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xiaocui Yin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Chunni Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
10
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
11
|
Galeotti M, Trasatti C, Sisti S, Salamone M, Bietti M. Factors Governing Reactivity and Selectivity in Hydrogen Atom Transfer from C(sp 3)-H Bonds of Nitrogen-Containing Heterocycles to the Cumyloxyl Radical. J Org Chem 2022; 87:7456-7463. [PMID: 35609878 PMCID: PMC9171822 DOI: 10.1021/acs.joc.2c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
A kinetic study of
the hydrogen atom transfer (HAT) reactions from
nitrogen-containing heterocycles (secondary and tertiary lactams,
2-imidazolidinones, 2-oxazolidinones, and succinimides) to the cumyloxyl
radical has been carried out employing laser flash photolysis with
ns time resolution. HAT occurs from the C–H bonds that are
α to nitrogen, activated by hyperconjugative overlap with the
N–C=O π system. In the lactam series, the second-order
HAT rate constant (kH) was observed to
decrease by a factor of ∼4 going from the five- and six-membered
ring derivatives to the eight-membered ones, a behavior that was rationalized
on the basis of a reduced extent of hyperconjugative activation associated
to the greater flexibility of the larger rings compared to the smaller
ones. In the five-membered-ring substrate series, the kH values were observed to increase by >3 orders of
magnitude
on going from succinimide to 2-imidazolidinones, a behavior that was
explained in terms of the divergent contribution of hyperconjugative
activation and deactivating electronic effects determined by ring
functionalities. The results are discussed in the framework of the
development of HAT-based C–H bond functionalization procedures.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università"Tor Vergata", Via Della Ricerca Scientifica, 1, Rome I-00133, Italy
| | - Chiara Trasatti
- Dipartimento di Scienze e Tecnologie Chimiche, Università"Tor Vergata", Via Della Ricerca Scientifica, 1, Rome I-00133, Italy
| | - Sergio Sisti
- Dipartimento di Scienze e Tecnologie Chimiche, Università"Tor Vergata", Via Della Ricerca Scientifica, 1, Rome I-00133, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università"Tor Vergata", Via Della Ricerca Scientifica, 1, Rome I-00133, Italy
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università"Tor Vergata", Via Della Ricerca Scientifica, 1, Rome I-00133, Italy
| |
Collapse
|
12
|
A uranium(
IV
) alkyl complex: Synthesis and catalytic property in carbonyl hydroboration. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|