1
|
Hou YJ, Wang YL, Chang J, Chai GL. Chiral Binaphthol-Catalyzed Enantioselective Conjugate Addition of Alkenyl and Arylboronic Acids to α,β-Unsaturated Cyclic N-Sulfonyl Ketimines. J Org Chem 2024; 89:13137-13149. [PMID: 39223946 DOI: 10.1021/acs.joc.4c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The chiral binaphthol-catalyzed enantioselective conjugate addition of alkenylboronic acids and heteroarylboronic acids to cyclic N-sulfonyl ketimines is reported, providing the 1,4-addition products in high yields and moderate to excellent enantioselectivities (up to >99% ee). This mild, scalable catalytic system exhibits high efficiency and broad substrate scopes. Additionally, arylboronic acids were viable nucleophiles under more forcing conditions.
Collapse
Affiliation(s)
- Ya-Jing Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang-Ling Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Peng PK, Isho A, May JA. Regio- and enantioselective synthesis of acyclic quaternary carbons via organocatalytic addition of organoborates to (Z)-Enediketones. Nat Commun 2024; 15:504. [PMID: 38218961 PMCID: PMC10787796 DOI: 10.1038/s41467-024-44744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
The chemical synthesis of molecules with closely packed atoms having their bond coordination saturated is a challenge to synthetic chemists, especially when three-dimensional control is required. The organocatalyzed asymmetric synthesis of acyclic alkenylated, alkynylated and heteroarylated quaternary carbon stereocenters via 1,4-conjugate addition is here catalyzed by 3,3´-bisperfluorotoluyl-BINOL. The highly useful products (31 examples) are produced in up to 99% yield and 97:3 er using enediketone substrates and potassium trifluoroorganoborate nucleophiles. In addition, mechanistic experiments show that the (Z)-isomer is the reactive form, ketone rotation at the site of bond formation is needed for enantioselectivity, and quaternary carbon formation is favored over tertiary. Density functional theory-based calculations show that reactivity and selectivity depend on a key n→π* donation by the unbound ketone's oxygen lone pair to the boronate-coordinated ketone in a 5-exo-trig cyclic ouroboros transition state. Transformations of the conjugate addition products to key quaternary carbon-bearing synthetic building blocks proceed in good yield.
Collapse
Affiliation(s)
- Po-Kai Peng
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Andrew Isho
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building Rm 112, Houston, TX, 77204-5003, USA.
| |
Collapse
|
3
|
Liu RH, Chai GL, Wang X, Deng HY, Chang J. Chiral-Boron-Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of β-Trifluoromethyl α,β-Unsaturated Ketones with N,N'-Cyclic Azomethine Imines. J Org Chem 2023; 88:16566-16580. [PMID: 37967281 DOI: 10.1021/acs.joc.3c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The (R)-3,3'-(3,5-(CF3)2-C6H3)2-BINOL-boron-complex-catalyzed asymmetric 1,3-dipolar cycloaddition of β-trifluoromethyl α,β-unsaturated ketone with N,N'-cyclic azomethine imines was developed to afford N,N'-bicyclic pyrazolidine derivatives bearing a stereogenic carbon center containing CF3 motifs in high yields with excellent diastereo- and enantioselectivities (up to >20:1 dr, and >99% ee). This catalytic system features mild reaction conditions, high efficiency, and a broad substrate scope.
Collapse
Affiliation(s)
- Rui-Hao Liu
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiao Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong-Yu Deng
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
4
|
Hou YJ, Zhao L, Chai GL, Zhong K, Chang J. Highly Enantioselective Chiral Diol-Catalyzed Conjugate Addition of Boronic Acids to α,β-Unsaturated Trifluoromethyl Ketones. J Org Chem 2023. [PMID: 38006355 DOI: 10.1021/acs.joc.3c02281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The (R)-3,3'-(3,5-(CF3)2-C6H3)2-BINOL-catalyzed enantioselective conjugate addition of organic boronic acids to α,β-unsaturated 1,1,1-trifluoromethyl ketones affords corresponding addition products bearing a stereogenic center at the β-position in moderate to high yields and excellent enantioselectivities (up to 99% ee), without any 1,2-addition product formation. Moreover, this catalytic protocol features mild reaction conditions, a broad substrate scope, suitability for alkenylboronic acids and (hetero)arylboronic acids, and easy scale-up.
Collapse
Affiliation(s)
- Ya-Jing Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lu Zhao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Chai GL, Wang X, Hou YJ, Ren WH, Chang J. Chiral-Boron-Complex Catalyzed Asymmetric Inverse-Electron-Demand Aza-Diels-Alder Reaction of β-Trifluoromethyl α,β-Unsaturated Ketones with Cyclic N-Sulfonyl Ketimines. Org Lett 2023; 25:6982-6986. [PMID: 37721381 DOI: 10.1021/acs.orglett.3c02463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
A highly efficient asymmetric inverse-electron-demand aza-Diels-Alder reaction of β-trifluoromethyl α,β-unsaturated ketone with cyclic N-sulfonyl ketimines catalyzed by (R)-3,3'-I2-BINOL-boron-complex was developed. A broad range of fused piperidine derivatives bearing stereogenic carbon containing CF3 motifs were prepared in high yields with excellent diastereo- and enantioselectivities (up to >20:1 dr, and >99% ee). This protocol had the characteristics of mild reaction conditions, high efficiency, and high stereoselectivity.
Collapse
Affiliation(s)
- Guo-Li Chai
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiao Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ya-Jing Hou
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wen-Hui Ren
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Chen D, Wan C, Liu Y, Wan JP. Three-Component Fusion to Pyrazolo[5,1- a]isoquinolines via Rh-Catalyzed Multiple Order Transformation of Enaminones. J Org Chem 2023; 88:4833-4838. [PMID: 36947699 DOI: 10.1021/acs.joc.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
A facile and practical method for the synthesis of fused tricyclic pyrazolo[5,1-a]isoquinolines has been realized via the reactions of enaminones, hydrazine hydrochloride, and internal alkynes. By means of Rh catalysis, the extraordinary high-order bond functionalization, including the transformation of aryl C-H, ketone C═O, and alkenyl C-N bonds in the enaminones, marks the major feature of the cascade reactions. The results disclose the individual advantage of enaminones in the design of novel and efficient synthetic methods.
Collapse
Affiliation(s)
- Demao Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Changfeng Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| |
Collapse
|
7
|
Wang X, Chai GL, Hou YJ, Zhou MQ, Chang J. Enantioselective Synthesis of Chiral Organosilicon Compounds by Organocatalytic Asymmetric Conjugate Addition of Boronic Acids to β-Silyl-α,β-Unsaturated Ketones. J Org Chem 2023. [PMID: 36812405 DOI: 10.1021/acs.joc.3c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herein, we report (R)-3,3'-(3,5-(CF3)2-C6H3)2-BINOL-catalyzed enantioselective conjugate addition of organic boronic acids to β-silyl-α,β-unsaturated ketones, furnishing moderate to excellent yields of the corresponding β-silyl carbonyl compounds with stereogenic centers in excellent enantioselectivities (up to 98% ee). Moreover, the catalytic system features mild reaction conditions, high efficiency, broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Xiao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ya-Jing Hou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ming-Qian Zhou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Ma HR, Peng XS, Cui JF, Wong HNC. Emerging optically active tetraphenylenes: Advances and challenges in synthesis and applications in asymmetric catalysis and chiral functional materials. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Guo J, Ma HR, Xiong WB, Fan L, Zhou YY, Wong HNC, Cui JF. Iridium-catalyzed enantioselective alkynylation and kinetic resolution of alkyl allylic alcohols. Chem Sci 2022; 13:13914-13921. [PMID: 36544735 PMCID: PMC9710208 DOI: 10.1039/d2sc04892b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, we report an efficient kinetic resolution of alkyl allylic alcohols enabled by an iridium-catalyzed enantioselective alkynylation of alkyl allylic alcohols with potassium alkynyltrifluoroborates. A wide range of chiral 1,4-enynes bearing various functional groups and unreacted enantioenriched allylic alcohols were obtained with excellent enantioselectivities and high kinetic resolution performance (s-factor up to 922). Additionally, this method is particularly effective for preparing some useful optically pure alkyl allylic alcohols, such as the key components towards the synthesis of prostaglandins and naturally occurring matsutakeols, which are difficult to access via other asymmetric reactions. Mechanistic studies revealed that the efficient kinetic resolution might be due to the significant distinction of the η 2-coordination between the (R)- and (S)-allylic alcohols with the iridium/(phosphoramidite, olefin) complex.
Collapse
Affiliation(s)
- Jia Guo
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - Hao-Ran Ma
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China,School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)2001 Longxiang Blvd.Shenzhen 518172China
| | - Wen-Bin Xiong
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - Luoyi Fan
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - You-Yun Zhou
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - Henry N. C. Wong
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China,School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)2001 Longxiang Blvd.Shenzhen 518172China,Department of Chemistry, The Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Jian-Fang Cui
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| |
Collapse
|
10
|
Chai GL, Yao EZ, Liu RH, Chang J. Chiral-Boron-Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of 2'-Hydroxychalcones with N, N'-Cyclic Azomethine Imines. Org Lett 2022; 24:6449-6454. [PMID: 36040361 DOI: 10.1021/acs.orglett.2c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the (R)-3,3'-I2-BINOL-boron-complex-catalyzed asymmetric 1,3-dipolar cycloaddition of 2'-hydroxychalcones with N,N'-cyclic azomethine imines, providing the corresponding N,N'-bicyclic pyrazolidine derivatives with three contiguous tertiary stereocenters in high yields with excellent diastereo- and enantioselectivities (up to >99:1 diastereomeric ratio and >99% enantiomeric excess). This catalytic system exhibits advantages of mild reaction conditions, high efficiency, and broad substrate scopes.
Collapse
Affiliation(s)
- Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - En-Ze Yao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Rui-Hao Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
11
|
Peng PK, May JA. Enantioselective Organocatalytic Conjugate Addition in a Tandem Synthesis of δ-Substituted Cyclohexenones and Four-Step Total Synthesis of Penienone. Org Lett 2022; 24:5334-5338. [PMID: 35838547 DOI: 10.1021/acs.orglett.2c01976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A bisperfluorotoluyl-BINOL catalyzed conjugate addition of trifluoroborate salts to doubly vinylogous esters and aldol condensation synthesized chiral δ-substituted cyclohexenones with high yields and enantioselectivities (10 examples, up to 89% yield, 89-98% ee). Stepwise and single-pot sequences were developed, with the former also providing β-substituted masked ketoaldehydes containing a vinyl ether. The transformation was used in a four-step total synthesis of penienone (24% overall yield), ≤ half the steps as in previous syntheses.
Collapse
Affiliation(s)
- Po-Kai Peng
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, Texas 77204-5003, United States
| | - Jeremy A May
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
12
|
Chai GL, Zhang P, Yao EZ, Chang J. Enantioselective Conjugate Addition of Boronic Acids to α,β-Unsaturated 2-Acyl Imidazoles Catalyzed by Chiral Diols. J Org Chem 2022; 87:9197-9209. [PMID: 35749308 DOI: 10.1021/acs.joc.2c00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report the enantioselective conjugate addition of organic boronic acids to α,β-unsaturated 2-acyl imidazoles using (R)-3,3'-I2-BINOL as the catalyst. The catalytic system shows high efficiency and tolerance to alkenylboronic acids and heteroarylboronic acids. The corresponding Michael addition products were obtained in moderate to excellent yields and with moderate to excellent enantioselectivities (up to 97% ee). A gram-scale reaction was also conducted, and the desired product was obtained in high yield with no erosion in enantioselectivity. Finally, the synthetic utility of the methodology was demonstrated by transforming the 2-acyl imidazole moiety to the corresponding aldehyde, carboxylic acid, ester, and amide derivatives.
Collapse
Affiliation(s)
- Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ping Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - En-Ze Yao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|