1
|
Kaiser D, Meyerbroeker N, Purschke W, Sell S, Neumann C, Winter A, Tang Z, Hüger D, Maasch C, Bethge L, Weimann T, Ferwerda G, de Jonge MI, Schnieders A, Vater A, Turchanin A. Ultrasensitive Detection of Chemokines in Clinical Samples with Graphene-Based Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407487. [PMID: 39564692 DOI: 10.1002/adma.202407487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/26/2024] [Indexed: 11/21/2024]
Abstract
Due to their ultra-high sensitivity, solution-gated graphene-based field-effect transistors (SG-GFET) have been proposed for applications in bio-sensing. However, challenges regarding the functionalization of GFETs have prevented their applications in clinical diagnostics so far. Here GFET sensors based on van der Waals (vdW) heterostructures of single-layer graphene layered with a molecular ≈1 nm thick carbon nanomembrane (CNM) are presented. The CNM acts as an ultrathin molecular interposer between the graphene channel and the analyte and allows bio-functionalization without impairing the graphene properties including its charge carrier mobility. To achieve specificity and reliability in the detection of biomarkers in real patient samples, the functionalization incorporates biostable aptamers in the non-natural l-configuration and hydrophilic polyethylene glycol for avoiding non-specific adsorption. A rapid (≈5 min) detection of the clinically relevant inflammatory mediator CXCL8/IL-8 within the concentration range of 0.5 - 500 pM (5 - 5000 pg ml-1) is demonstrated in nasal swab samples collected from patients with respiratory tract infections. This detection range may aid in diagnostics of early-stage infectious diseases making the reported approach promising for the development of future medical tools.
Collapse
Affiliation(s)
- David Kaiser
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | | | - Werner Purschke
- NOXXON Pharma AG, 10589, Berlin, Germany
- APTARION Biotech AG, 10589, Berlin, Germany
| | | | - Christof Neumann
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Andreas Winter
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Zian Tang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Daniel Hüger
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | | | | | - Thomas Weimann
- Physikalisch-Technische Bundesanstalt, 38116, Braunschweig, Germany
| | - Gerben Ferwerda
- Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | | | - Axel Vater
- NOXXON Pharma AG, 10589, Berlin, Germany
- APTARION Biotech AG, 10589, Berlin, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
- Jena Center for Soft Matter, 07743, Jena, Germany
| |
Collapse
|
2
|
Ranasinghe JC, Wang Z, Huang S. Unveiling brain disorders using liquid biopsy and Raman spectroscopy. NANOSCALE 2024; 16:11879-11913. [PMID: 38845582 PMCID: PMC11290551 DOI: 10.1039/d4nr01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present significant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable, lack the molecular specificity necessary for precise disease characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and cost-effectiveness, holds great potential for transformative advancements in early detection and understanding the biochemical changes associated with NDs and TBI. Recent developments in Raman enhancement technologies and advanced data analysis methods have enhanced the applicability of RS in probing the intricate molecular signatures within biological fluids, offering new insights into disease pathology. This review explores the growing role of RS as a promising and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic tool.
Collapse
Affiliation(s)
- Jeewan C Ranasinghe
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Ziyang Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
3
|
Vrahatis AG, Skolariki K, Krokidis MG, Lazaros K, Exarchos TP, Vlamos P. Revolutionizing the Early Detection of Alzheimer's Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:4184. [PMID: 37177386 PMCID: PMC10180573 DOI: 10.3390/s23094184] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD) is now classified as a silent pandemic due to concerning current statistics and future predictions. Despite this, no effective treatment or accurate diagnosis currently exists. The negative impacts of invasive techniques and the failure of clinical trials have prompted a shift in research towards non-invasive treatments. In light of this, there is a growing need for early detection of AD through non-invasive approaches. The abundance of data generated by non-invasive techniques such as blood component monitoring, imaging, wearable sensors, and bio-sensors not only offers a platform for more accurate and reliable bio-marker developments but also significantly reduces patient pain, psychological impact, risk of complications, and cost. Nevertheless, there are challenges concerning the computational analysis of the large quantities of data generated, which can provide crucial information for the early diagnosis of AD. Hence, the integration of artificial intelligence and deep learning is critical to addressing these challenges. This work attempts to examine some of the facts and the current situation of these approaches to AD diagnosis by leveraging the potential of these tools and utilizing the vast amount of non-invasive data in order to revolutionize the early detection of AD according to the principles of a new non-invasive medicine era.
Collapse
Affiliation(s)
| | | | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
| | | | | | | |
Collapse
|
4
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
5
|
Tan SH, Yougbaré S, Tao HY, Chang CC, Kuo TR. Plasmonic Gold Nanoisland Film for Bacterial Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3139. [PMID: 34835903 PMCID: PMC8621882 DOI: 10.3390/nano11113139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
Plasmonic nanomaterials have been intensively explored for applications in biomedical detection and therapy for human sustainability. Herein, plasmonic gold nanoisland (NI) film (AuNIF) was fabricated onto a glass substrate by a facile seed-mediated growth approach. The structure of the tortuous gold NIs of the AuNIF was demonstrated by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Based on the ultraviolet-visible spectrum, the AuNIF revealed plasmonic absorption with maximum intensity at 624 nm. With the change to the surface topography created by the NIs, the capture efficiency of Escherichia coli (E. coli) by the AuNIF was significantly increased compared to that of the glass substrate. The AuNIF was applied as a surface-enhanced Raman scattering (SERS) substrate to enhance the Raman signal of E. coli. Moreover, the plasmonic AuNIF exhibited a superior photothermal effect under irradiation with simulated AM1.5 sunlight. For photothermal therapy, the AuNIF also displayed outstanding efficiency in the photothermal killing of E. coli. Using a combination of SERS detection and photothermal therapy, the AuNIF could be a promising platform for bacterial theranostics.
Collapse
Affiliation(s)
- Shih-Hua Tan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso;
| | - Hsuan-Ya Tao
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|