1
|
Amiri S, Chahkandi M, Zargazi M. Ag 2O@UiO-66 new thin film as p-n heterojunction: permanent photoreduction of hexavalent Cr. RSC Adv 2024; 14:3867-3877. [PMID: 38274162 PMCID: PMC10810231 DOI: 10.1039/d3ra06305d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The new nanosphere Ag2O@UiO-66 thin-film was synthesized on a stainless steel mesh surface via an electrophoretic deposition method, and is used as an effective and low-cost photocatalyst using visible light. The synthesized nanocomposite was used to perform photo-reduction of Cr(vi) ions under white light irradiation. The best removal rate (72% after 15 minutes) was obtained by the film with 0.034 grams of deposited composite having relative percentages of Ag2O : UiO-66 of 70 : 30. The interesting obtained results confirm that the p-n heterojunction of the composite is the main cause of the desired charge separation and the photoreduction speed increase. In the following, the resulting compounds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), transmittance electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy diffraction X-ray spectroscopy (EDAX) and the Brunauer, Emmett, and Teller (BET) method. Scavenging studies performed in the presence of familiar scavengers confirmed that superoxide radicals (˙O2-) and dissolved oxygen gas have a significant role in the photocatalytic reduction process.
Collapse
Affiliation(s)
- Sara Amiri
- Department of Chemistry, Hakim Sabzevari University Sabzevar 96179-76487 Iran +985144013501 +985144013525
| | - Mohammad Chahkandi
- Department of Chemistry, Hakim Sabzevari University Sabzevar 96179-76487 Iran +985144013501 +985144013525
| | - Mahboobeh Zargazi
- Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
2
|
Hossain MS, Tuntun SM, Bahadur NM, Ahmed S. Enhancement of photocatalytic efficacy by exploiting copper doping in nano-hydroxyapatite for degradation of Congo red dye. RSC Adv 2022; 12:34080-34094. [PMID: 36505682 PMCID: PMC9704492 DOI: 10.1039/d2ra06294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
This research deals with the photocatalytic activity of hydroxyapatite and the improvement of efficiency by doping various percentages of copper; the catalysts were synthesized by the wet-chemical method. Pure and copper-doped photocatalysts were characterized by several techniques including X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), dynamic scanning calorimetry (DSC), and UV-Vis spectroscopy. The competency of pure and copper-doped hydroxyapatite as photocatalysts was assessed by their interaction with Congo red dye. The crystallographic parameters of the catalysts were also estimated by employing the XRD technique, and a relationship was established between the calculated parameters and photocatalytic performance. Crystallite size was calculated from various model equations, which revealed an acceptable crystallite size of 42-68 nm. Copper doping in hydroxyapatite impressively augmented the photocatalytic efficacy, for example 99% dye was degraded upon 0.63% Cu-doping compared to 75% for the pure HAp, which was exemplified not only by the reaction rate but also by the quantum yield. The degradation percentages changed with time but became fixed at 200 min. The molar extinction coefficient was estimated by employing the Beer-Lambert law and further utilized to compute the photonic efficiency of the catalysts. In the study of the photochemical reaction, a simplified reaction process was proposed, and the potentials of the conduction band and valence band were assessed, which influenced the activity. The doping of Cu in crystalline hydroxyapatite will enhance the photocatalytic activity towards Congo red dye under all experimental conditions.
Collapse
Affiliation(s)
- Md. Sahadat Hossain
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka 1205Bangladesh
| | - Supanna Malek Tuntun
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka 1205Bangladesh,Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology UniversityNoakhaliBangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology UniversityNoakhaliBangladesh
| | - Samina Ahmed
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka 1205Bangladesh,BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka 1205Bangladesh
| |
Collapse
|
3
|
Housaindokht MR, Jamshidi A, Zonoz FM, Firouzi M. A novel nanocomposite (g-C 3N 4/Fe 3O 4@P 2W 15V 3) with dual function in organic dyes degradation and cysteine sensing. CHEMOSPHERE 2022; 304:135305. [PMID: 35718034 DOI: 10.1016/j.chemosphere.2022.135305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Among the important needs of human societies is the elimination of environmental pollution and also the construction of high-performance and inexpensive biosensors. In this regard, the construction of multi-functional composites has been considered. A novel magnetic graphite carbon nitride decorated by tri-vanadium substituted Dawson-type heteropolytungstate nanocomposite (C3N4/Fe3O4@P2W15V3) effectively synthesized and characterized by prevalent functional analysis. The prepared nano-catalyst presents bi-functional usage involving photocatalytic removal of dyes (methylene blue, congo red and phenyl red) (around 98%) under visible light radiation and greatly sensitive colorimetric sensing of cysteine in an aqueous media. Moreover, synthesized nano-catalyst successfully recovered five times without any considerable deficiency on its photocatalytic ability. Further, Moreover, we propose a novel method for cysteine detection based on the C3N4/Fe3O4@P2W15V3 nanocomposite. This nanocomposite displayed a privileged catalytic feature for cysteine oxidation to extend a clock reaction of methylene blue as an indicator in the presence of NaBH4 in acidic solution. More importantly, this colorimetric sensing method of cysteine presents an easy, low-cost, selective, and rapid colorimetric assay with a detection limit value of 7.2 μM in the acceptable linear range of 5-600 μM.
Collapse
Affiliation(s)
- Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Research and Technology Center of Biomolecule, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Ali Jamshidi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Research and Technology Center of Biomolecule, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mojtaba Firouzi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Govindasamy P, Kandasamy B, Thangavelu P, Barathi S, Thandavarayan M, Shkir M, Lee J. Biowaste derived hydroxyapatite embedded on two-dimensional g-C 3N 4 nanosheets for degradation of hazardous dye and pharmacological drug via Z-scheme charge transfer. Sci Rep 2022; 12:11572. [PMID: 35799052 PMCID: PMC9262945 DOI: 10.1038/s41598-022-15799-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, there has been an increase in demand for inexpensive biowaste-derived photocatalysts for the degradation of hazardous dyes and pharmacological drugs. Here, we developed eggshell derived hydroxyapatite nanoparticles entrenched on two-dimensional g-C3N4 nanosheets. The structural, morphological and photophysical behavior of the materials is confirmed through various analytical techniques. The photocatalytic performance of the highly efficient HAp/gC3N4 photocatalyst is evaluated against methylene blue (MB) and doxycycline drug contaminates under UV-visible light exposure. The HAp/gC3N4 photocatalyst exhibit excellent photocatalytic performance for MB dye (93.69%) and doxycycline drug (83.08%) compared to bare HAp and g-C3N4 nanosheets. The ultimate point to note is that the HAp/gC3N4 photocatalyst was recycled in four consecutive cycles without any degradation performance. Superoxide radicals play an important role in degradation performance, which has been confirmed by scavenger experiments. Therefore, the biowaste-derived HAp combined with gC3N4 nanosheets is a promising photocatalyst for the degradation of hazardous dyes and pharmacological drug wastes.
Collapse
Affiliation(s)
- Palanisamy Govindasamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Bhuvaneswari Kandasamy
- Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Tamil Nadu, Kalavakkam, 603 110, India
| | - Pazhanivel Thangavelu
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Tamil Nadu, Salem, 636 011, India
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Maiyalagan Thandavarayan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Mohd Shkir
- Advanced Functional Materials and Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry and University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
5
|
Kalita J, Bharali L, Dhar SS. Zn-doped hydroxyapatite@g-C 3N 4: a novel efficient visible-light-driven photocatalyst for degradation of pharmaceutical pollutants. NEW J CHEM 2022. [DOI: 10.1039/d2nj04087e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heterojunction formation has been shown to be an effective technique for tuning nanomaterial features such as chemical reactivity and optical performance.
Collapse
Affiliation(s)
- Juri Kalita
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| | - Linkon Bharali
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| | - Siddhartha S. Dhar
- Department of Chemistry, National Institute of Technology, Silchar, Cachar, 788010, Assam, India
| |
Collapse
|