1
|
Janovský P, Springer A, Filip J, Prucková Z, Nečas M, Rouchal M, Schalley CA, Vícha R. para-Phenylenediamine Dimer as a Redox-Active Guest for Supramolecular Systems. Chemistry 2024; 30:e202400535. [PMID: 38415892 DOI: 10.1002/chem.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Redox-active components are highly valuable in the construction of molecular devices. We combined two p-phenylenediamines (p-PDA) with a biphenyl (BiPhe) unit to prepare a supramolecular guest 4 consisting of three binding sites for cucurbit[7/8]uril (CBn) and/or cyclodextrins (CD). Supramolecular properties of 4 were investigated using NMR, UV-vis, mass spectrometry and isothermal titration calorimetry. Our analysis revealed that 4 forms higher-order host-guest complexes, wherein a CD unit occupies the central BiPhe site, secured by two CBn units at the terminal p-PDA sites. Additionally, 1 : 1 complexes with α-CD and β-CD, a 1 : 2 complex with γ-CD and 2 : 1 complexes with CB7 and CB8 were identified. Through UV-vis and cyclic voltammetry, redox processes leading to the formation of a stable, deep blue dication diradical of 4 are elucidated. Furthermore, it is demonstrated that CB7 selectively protects oxidised 4 from reduction in the presence of a reducing agent. The supramolecular and redox properties of the structural motif represented by 4 render it an interesting candidate for the construction of supramolecular devices.
Collapse
Affiliation(s)
- Petr Janovský
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| | - Andreas Springer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Jaroslav Filip
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou, 3685, 760 01, Zlín, Czech Republic
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| | - Marek Nečas
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 602 00, Brno, Czech Republic
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, 760 01, Zlín, Czech Republic
| |
Collapse
|
2
|
Ambrose B, Sathyaraj G, Kathiresan M. Evaluation of the complexation behaviour among functionalized diphenyl viologens and cucurbit[7] and [8]urils. Sci Rep 2024; 14:5786. [PMID: 38461363 PMCID: PMC10924918 DOI: 10.1038/s41598-024-56370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
The complexation behaviour of Diphenyl viologens (DPVs) with Cucurbit[n]urils (CB[n]) was evaluated in detail and the results were reported. In this work, we present the synthesis of various DPVs functionalised with electron withdrawing and electron donating groups (EWGs & EDGs) and investigate their complexation behaviour with CB[7] and CB [8]. Carboxylic acid functionalized DPV's (DPV-COOH) complexation with CB[8] gives additional insights, i.e., indicates hydrogen bonding plays an effective role in the complexation. The formation of a 2:2 quaternary complex of DPV-COOH/CB[8] under neutral pH conditions was supported by various analytical techniques. The complexation of DPVs with CB[7] specifies that irrespective of the functional group attached, they all form a 1:2 ternary complex, but the findings elaborate that the pattern followed in the complexation depends on the EW or EDG attached to the DPVs. The competition experiments conducted between functionalized DPVs and CB[7], CB[8] shows that they have more affinity towards CB[8] than CB[7] because of the better macrocyclic confinement effect of CB[8], as confirmed using UV-Vis spectroscopy. The binding affinity among EWG and EDG functionalised DPVs with CB[8] concludes EDG functionalised DPVs show better affinity towards CB[8], because they can form a charge transfer complex inside the CB[8] cavity. Exploring these host-guest interactions in more complex biological or environmental settings and studying their impact on the functionality of DPVs could be an exciting avenue for future research.
Collapse
Affiliation(s)
- Bebin Ambrose
- Electro Organic and Materials Electrochemistry Division, CSIR-CECRI, Tamil Nadu, Karaikudi, 630 003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gopal Sathyaraj
- CLRI-CATERS, CSIR-Central Leather Research Institute, Tamil Nadu, Chennai, 600020, India
| | - Murugavel Kathiresan
- Electro Organic and Materials Electrochemistry Division, CSIR-CECRI, Tamil Nadu, Karaikudi, 630 003, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Kermagoret A, Bardelang D. The Diversity of Cucurbituril Molecular Switches and Shuttles. Chemistry 2023:e202302114. [PMID: 37725407 DOI: 10.1002/chem.202302114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Ring translocation switches and shuttles featuring a macrocycle (or a ring molecule) navigating between two or more stations continue to attract attention. While the vast majority of these systems are developed in organic solvents, the cucurbituril (CB) macrocycles are ideally suited to prepare such systems in water. Indeed, their stability and their relatively high affinity for relevant guest molecules are key attributes toward translating the progresses made in organic solvents, into water. This concept article summarizes the findings, key advances and multiple possibilities offered by CBs toward advanced molecular switches and shuttles in water.
Collapse
|
4
|
Sin KR, Kim CJ, Ko SG, Hwang TM, Han YN, Pak YN. Inclusion of thymol into cucurbiturils: density functional theory approach with dispersion correction and natural bond orbital analysis. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|