1
|
Virender V, Pandey V, Singh G, Sharma PK, Bhatia P, Solovev AA, Mohan B. Hybrid Metal-Organic Frameworks (MOFs) for Various Catalysis Applications. Top Curr Chem (Cham) 2024; 383:3. [PMID: 39671137 DOI: 10.1007/s41061-024-00486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Porous materials have been gaining popularity in catalysis applications, solving the current ecological challenges. Metal-organic frameworks (MOFs) are especially noteworthy for their high surface areas and customizable chemistry, giving them a wide range of potential applications in catalysis remediation. The review study delves into the various applications of MOFs in catalysis and provides a comprehensive summary. This review thoroughly explores MOF materials, specifically focusing on their diverse catalytic applications, including Lewis catalysis, oxidation, reduction, photocatalysis, and electrocatalysis. Also, this study emphasizes the significance of high-performance MOF materials, which possess adjustable properties and exceptional features, as a novel approach to tackling technological challenges across multiple sectors. MOFs make it an ideal candidate for catalytic reactions, as it enables efficient conversion rates and selectivity. Furthermore, the tunable properties of MOF make it possible to tailor its structure to suit specific catalytic requirements. This feature improves performance and reduces costs associated with traditional catalysts. In conclusion, MOF materials have revolutionized the field of catalysis and offer immense potential in solving various technological challenges across different industries.
Collapse
Affiliation(s)
- Virender Virender
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Vandana Pandey
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Pawan Kumar Sharma
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendragarh, 123031, Haryana, India
| | - Pankaj Bhatia
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Alexander A Solovev
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
2
|
Wang K, Zhang H, Jin N, Zhou Y, Guo X, Zhong W, Li X, Li X, Zhang Y. Interfacial modification of recombinant protein for immunoglobulin G adsorption with spindle-shaped MOF as nano molecular containers. Talanta 2024; 280:126535. [PMID: 39121618 DOI: 10.1016/j.talanta.2024.126535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Development of fresh solid phase extractant is critical for selective separation and purification of special proteins. Herein, we demonstrated a recombinant Staphylococcal Protein G (rSPG) with a His-tag modified the novel single-metal organic framework (rSPG@Ni-MOF-74). The proposed solid-phase extraction material possessed a uniform spindle-shaped structure, large surface area (709.60 m2 g-1) and pore volume (0.08 m3 g-1), high metal content (22.57 wt%), which facilitated the interaction between host and guest. As results, the composite displayed outstanding selective recognition and adsorption of IgG, due to synergistic effect of the binding ability of rSPG with the Fc region of IgG, maintained through hydrogen bonding and electrostatic attraction, as well as hydrophobic interaction. The adsorption performance and mechanism of rSPG@Ni-MOF-74 have been fully investigated. Additionally, the rSPG@Ni-MOF-74 composite could effectively separate IgG from serum obtained from healthy humans, with the purity of the separated IgG verified through SDS-PAGE analysis. Furthermore, LC-MS/MS analysis identified a high content of IgG (55.3 %) in the eluate from rSPG@Ni-MOF-74, suggesting the great potential of rSPG@Ni-MOF-74 in IgG separation and enrichment from complex matrix.
Collapse
Affiliation(s)
- Kai Wang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Hongjin Zhang
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Nishan Jin
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Yutian Zhou
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xinli Guo
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Wenbin Zhong
- School of Basic Medicine, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xin Li
- Department of Science and Technology, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China
| | - Xuwen Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Yang Zhang
- Shenyang Key Laboratory of Medical Molecular Theranostic Probes in School of Pharmacy, Shenyang Medical College, 146 Huanghe North Avenue, Shenyang, 110034, China.
| |
Collapse
|
3
|
Abou-Elyazed AS, Ftooh AI, Sun Y, Ashry AG, Shaban AKF, El-Nahas AM, Yousif AM. Solvent-Free Synthesis of HKUST-1 with Abundant Defect Sites and Its Catalytic Performance in the Esterification Reaction of Oleic Acid. ACS OMEGA 2024; 9:37662-37671. [PMID: 39281896 PMCID: PMC11391445 DOI: 10.1021/acsomega.4c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024]
Abstract
HKUST-1 has received increasing attention because of its potential applications in many fields, such as heterogeneous catalysis, sensors, gas storage, and separation. Herein, we report that HKUST-1 can be facilely prepared by heating a ground mixture of copper nitrate trihydrate and 1,3,5-benzenetricarboxylic acid in an autoclave at 80 °C for 10 h. The data from nitrogen sorption show that the obtained material, named HKUST-1-free, possesses a high BET specific surface area of 1671 m2/g and a pore volume of 0.8 cm3/g. The results from acid-base titration indicate that the number of defect sites in HKUST-1-free is more than that in HKUST-1-solvent prepared by the solvothermal method. As a heterogeneous catalyst, HKUST-1-free gave a high yield (91%) of methyl oleate in the esterification reaction of oleic acid with methanol at room temperature compared to HKUST-1-solvent (70%). Additionally, it is proven that HKUST-1-free is a heterogeneous catalyst and can be reused.
Collapse
Affiliation(s)
- Ahmed S Abou-Elyazed
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Abdelhalim I Ftooh
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Yinyong Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Asmaa G Ashry
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Amira K F Shaban
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ahmed M El-Nahas
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Ahmed M Yousif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, KSA
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| |
Collapse
|
4
|
Minenkova IV, Lebedev VV, Buryak AK. Application of matrix-assisted laser desorption/ionization in the studies of phosphotungstic acid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9870. [PMID: 39004785 DOI: 10.1002/rcm.9870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
RATIONALE Phosphorotungstic acid (PTA) has many applications, especially in the field of catalysis, due to its structural properties. However, the structure of PTA is studied mainly using theoretical methods. Matrix-assisted laser desorption/ionization (MALDI) has the potential to be an effective method for the experimental study of heteropolyacids. Limitations of MALDI are the high molecular weight of the particles and the complex distribution of isotopic peak intensities. Both problems can be solved by automatically identifying observed signals by generating hypothetical molecular formulas and estimating their isotopic distributions. METHODS Phosphotungstic acid was studied under conditions of laser desorption/ionization in the absence and in the presence of the matrix. Three types of matrices were used: 2,5-dihydroxybenzoic acid in water, α-cyano-4-hydroxycinnamic acid in acetonitrile, and sinapic acid (SA) in tetrahydrofuran. Part of the peaks in the resulting mass spectra was identified using in-house developed software that implements the automated isotopic distribution brute force. RESULTS The most informative mass spectra were obtained using SA as the matrix, which enabled the detection of particles containing PTA dimers for the first time. The compositions of particles incorporating PTA dimers were determined in an automated manner and can be written as [H3PW12O40]2·2H2O (m/z = 5791.2 Da) and [H3PW12O40]2·4H2O (m/z = 5836.5 Da). Other observed species included (WO3)n·PO3 -, HPO2·(WO3)n, and WO2·(WO3)n clusters, with the latter containing W in mixed oxidation states. CONCLUSIONS The combined use of MALDI and an automated identification procedure provided valuable experimental data on the structure and fragmentation of phosphotungstic acid. To the best of our knowledge, this study was the first to report on particles containing phosphotungstic acid dimers.
Collapse
Affiliation(s)
- Irina V Minenkova
- The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS), Moscow, Russia
| | - Viacheslav V Lebedev
- The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS), Moscow, Russia
| | - Alexey K Buryak
- The Institute of Physical Chemistry and Electrochemistry RAS (IPCE RAS), Moscow, Russia
| |
Collapse
|
5
|
Schacht-Hernández P, Miranda-Olvera AD, Jiménez-Cruz F, Morelos-Santos O, García-Gutiérrez JL, Quintana-Solórzano R. Processing and Recovery of Heavy Crude Oil Using an HPA-Ni Catalyst and Natural Gas. ACS OMEGA 2024; 9:34089-34097. [PMID: 39130572 PMCID: PMC11307308 DOI: 10.1021/acsomega.4c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
To maintain economic profitability and stabilize fuel prices, refineries actively explore alternatives for efficiently processing (extra) heavy crude oils. These oils are challenging to process due to their complex composition, which includes significant quantities of asphaltenes, resins, and sulfur and nitrogen heteroatoms. A critical initial step in upgrading these oils is the hydrogenation of polyaromatic compounds, requiring substantial hydrogen sources. Methane from natural gas streams is known to act as an effective hydrogen donor. This study investigates the use of a heteropolyacid (HPA) catalyst modified with nickel and methane to enhance the quality of heavy crude oil with an initial 8.0°API (at 15.5 °C) and 2200 cSt viscosity (at 37.5 °C). After treatment in a batch reactor at 380 °C and 4.4 MPa for 2 h, the oil properties markedly improved: API gravity increased from 8.0 to 16.0 (at 15.5 °C), and kinematic viscosity reduced from 2200 to 125 cSt (at 37.5 °C). Additionally, there was a significant decrease in asphaltenes (from 38.7 to 16.4% by weight), sulfur (from 5.9 to 4.0% by weight), and nitrogen (from 971 to 695 ppm). This was accompanied by an increase in the volume of light distillates from 1.3 to 4.9%, and middle distillates from 8.8 to 21.0%. These results suggest that nickel-modified HPA catalysts, combined with methane as a hydrogen donor, are a promising option for upgrading heavy crude oils.
Collapse
Affiliation(s)
- Persi Schacht-Hernández
- Instituto
Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte
152, Ciudad de México 07730, México
| | - Alma Delia Miranda-Olvera
- Instituto
Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte
152, Ciudad de México 07730, México
| | - Federico Jiménez-Cruz
- Instituto
Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte
152, Ciudad de México 07730, México
| | - Oscar Morelos-Santos
- Tecnológico
Nacional de México/Instituto Tecnológico de Ciudad Madero, Ciencias Básicas, Av. 1°
de Mayo s/n, Los Mangos, Ciudad Madero, Tamaulipas 89440, México
| | | | | |
Collapse
|
6
|
Zhang X, Xu Y, Liu Y, Wei Y, Lan F, Wang J, Liu X, Wang R, Yang Y, Chen J. Improving oxygen reduction reaction by cobalt iron-layered double hydroxide layer on nickel-metal organic framework as cathode catalyst in microbial fuel cell. BIORESOURCE TECHNOLOGY 2024; 392:130011. [PMID: 37956946 DOI: 10.1016/j.biortech.2023.130011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Cobalt Iron -layered double hydroxide (CoFe-LDH) nano sheets were attached to Nickel-metal organic frameworks (Ni-MOF) by utilizing hydrothermal reaction method, and CoFe-LDH@Ni-MOF was synthesized and worked as the cathode catalyst in microbial fuel cell. The surface of this composite material provided generous electrochemical active sites, consisting of wrinkled strips of CoFe-LDH adhering to a lamellar structure of Ni-MOF. In terms of the maximum output power density, CoFe-LDH@Ni-MOF as the catalyst was 211 mW/m2, 2.54 times higher than that of Ni-MOF (83 mW/m2), and it was stable at about 225 mV for 150 h. CoFe-LDH@Ni-MOF showed high oxygen reduction reaction capability and high specific surface area, and the electron transfer rate was accelerated. This work might set the stage for the development and utilization of fuel cell cathode catalysts.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuling Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yushan Wei
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Feng Lan
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Jiayu Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Xuemeng Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
7
|
Han S, Sun R, Zhao L, Yan C, Chu H. Molecularly imprinted electrochemical sensor based on synergistic interaction of honeycomb-like Ni-MOF decorated with AgNPs and N-GQDs for ultra-sensitive detection of olaquindox in animal-origin food. Food Chem 2023; 418:136001. [PMID: 36989645 DOI: 10.1016/j.foodchem.2023.136001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Olaquindox (OLA) in food from its illegal use possesses great harmful effects on humans, making it important to develop sensitive, inexpensive, and convenient methods for OLA detection. This study innovatively presented a molecularly imprinted electrochemical sensor based on the synergistic effects of nitrogen-doped graphene quantum dots (N-GQDs) and a nickel-based metal-organic framework functionalized with silver nanoparticles (Ag/Ni-MOF) for OLA detection. N-GQDs and Ag/Ni-MOF with unique honeycomb structures were sequentially modified on the glassy carbon electrode (GCE) surface to accelerate the electron transfer rate and increase the available region of the electrode. Molecularly imprinted polymers were further grown on the Ag/Ni-MOF/N-GQDs/GCE by electropolymerization to significantly enhance the selective recognition of OLA. The constructed sensor showed excellent performance for selective OLA determination, with a wide linear range (5-600 nmol·L-1) and exceedingly low detection limit (2.2 nmol·L-1). The sensor was successfully applied to detect OLA in animal-origin food with satisfactory recoveries (96.22-101.02%).
Collapse
Affiliation(s)
- Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, China.
| | - Ruonan Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Le Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Chen Yan
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
8
|
Vinod N, Dutta S. Production of Alkyl Levulinates from Carbohydrate-Derived Chemical Intermediates Using Phosphotungstic Acid Supported on Humin-Derived Activated Carbon (PTA/HAC) as a Recyclable Heterogeneous Acid Catalyst. CHEMISTRY 2023. [DOI: 10.3390/chemistry5020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
This work reports a straightforward and high-yielding synthesis of alkyl levulinates (ALs), a class of promising biofuel, renewable solvent, and chemical feedstock of renewable origin. ALs were prepared by the acid-catalyzed esterification of levulinic acid (LA) and by the alcoholysis of carbohydrate-derived chemical platforms, such as furfuryl alcohol (FAL) and α-angelica lactone (α-AGL). Phosphotungstic acid (PTA) was chosen as the solid acid catalyst for the transformation, which was heterogenized on humin-derived activated carbon (HAC) for superior recyclability. Using HAC as catalyst support expands the scope of valorizing humin, a complex furanic resin produced inevitably as a side product (often considered waste) during the acid-catalyzed hydrolysis/dehydration of sugars and polymeric carbohydrates. Under optimized conditions (150 °C, 7 h, 25 wt.% of 20%PTA/HAC-600 catalyst), ethyl levulinate (EL) was obtained in an 85% isolated yield starting from FAL. Using the general synthetic protocol, EL was isolated in 88% and 84% yields from LA and α-AGL, respectively. The 20%PTA/HAC-600 catalyst was successfully recovered from the reaction mixture and recycled for five cycles. A marginal loss in the yield of ALs was observed in consecutive catalytic cycles due to partial leaching of PTA from the HAC support.
Collapse
Affiliation(s)
- Nivedha Vinod
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Mangaluru 575025, Karnataka, India
| | - Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Mangaluru 575025, Karnataka, India
| |
Collapse
|
9
|
Zhang Y, Li W, Wang J, Jin J, Zhang Y, Cheng J, Zhang Q. Advancement in utilization of magnetic catalysts for production of sustainable biofuels. Front Chem 2023; 10:1106426. [PMID: 36704618 PMCID: PMC9871569 DOI: 10.3389/fchem.2022.1106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
In this study, we summarize recent advances in the synthesis of magnetic catalysts utilized for biodiesel production, particularly focusing on the physicochemical properties, activity, and reusability of magnetic mixed metal oxides, supported magnetic catalysts, ionic acid-functionalized magnetic catalysts, heteropolyacid-based magnetic catalysts, and metal-organic framework-based magnetic catalysts. The prevailing reaction conditions in the production of biodiesel are also discussed. Lastly, the current limitations and challenges for future research needs in the magnetic catalyst field are presented.
Collapse
Affiliation(s)
- Yutao Zhang
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University, Anshun, Guizhou, China,School of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, China,College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun, Guizhou, China,*Correspondence: Yutao Zhang, ; Qiuyun Zhang,
| | - Weihua Li
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University, Anshun, Guizhou, China
| | - Jialu Wang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun, Guizhou, China
| | - Jiaxing Jin
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, China
| | - Yixi Zhang
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University, Anshun, Guizhou, China
| | - Jingsong Cheng
- School of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, China
| | - Qiuyun Zhang
- Engineering Technology Center of Control and Remediation of Soil Contamination of Guizhou Science and Technology Department, Anshun University, Anshun, Guizhou, China,School of Chemistry and Chemical Engineering, Anshun University, Anshun, Guizhou, China,College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun, Guizhou, China,*Correspondence: Yutao Zhang, ; Qiuyun Zhang,
| |
Collapse
|
10
|
Zhang Q, Wang J, Zhang S, Ma J, Cheng J, Zhang Y. Zr-Based Metal-Organic Frameworks for Green Biodiesel Synthesis: A Minireview. Bioengineering (Basel) 2022; 9:700. [PMID: 36421101 PMCID: PMC9687256 DOI: 10.3390/bioengineering9110700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
Metal-organic frameworks (MOFs) have widespread application prospects in the field of catalysis owing to their functionally adjustable metal sites and adjustable structure. In this minireview, we summarize the current advancements in zirconium-based metal-organic framework (Zr-based MOF) catalysts (including single Zr-based MOFs, modified Zr-based MOFs, and Zr-based MOF derivatives) for green biofuel synthesis. Additionally, the yields, conversions, and reusability of Zr-based MOF catalysts for the production of biodiesel are compared. Finally, the challenges and future prospects regarding Zr-based MOFs and their derivatives for catalytic application in the biorefinery field are highlighted.
Collapse
Affiliation(s)
- Qiuyun Zhang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun 561000, China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Jialu Wang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun 561000, China
- School of Resource and Environmental Engineering, Anshun University, Anshun 561000, China
| | - Shuya Zhang
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Jingsong Cheng
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| | - Yutao Zhang
- College Rural Revitalization Research Center of Guizhou, Anshun University, Anshun 561000, China
- School of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China
| |
Collapse
|
11
|
Metal-organic framework as a heterogeneous catalyst for biodiesel production: A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Yadav D, Datta S, Saha S, Pradhan S, Kumari S, Gupta PK, Chauhan V, Saw SK, Sahu G. Heterogeneous Nanocatalyst for Biodiesel Synthesis. ChemistrySelect 2022. [DOI: 10.1002/slct.202201671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deshal Yadav
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Sudipta Datta
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Sujan Saha
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Subhalaxmi Pradhan
- Division of Chemistry SBAS Galgotias University Greater Noida Uttar Pradesh India
| | - Shweta Kumari
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Pavan Kumar Gupta
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Vishal Chauhan
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Shiva Kumar Saw
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| | - Gajanan Sahu
- Gasification and Catalysis Research Group CSIR-Central Institute of Mining and Fuel Research, PO-FRI Dhanbad Jharkhand India- 828108 https://cimfr.nic.in/upload_files/staff_members_divisions/attachment/1633072898_Gajanan_Sahu_Bio_Data.pdf
| |
Collapse
|
13
|
Saghanezhad SJ, Vaccaro L, Zarei Ahmady A, Farsi R. Phosphotungstic acid-supported melamine–terephthalaldehyde covalent organic framework as a novel and reusable nanostructured catalyst in three-component synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Helal A, Shaheen Shah S, Usman M, Khan MY, Aziz MA, Mizanur Rahman M. Potential Applications of Nickel-Based Metal-Organic Frameworks and their Derivatives. CHEM REC 2022; 22:e202200055. [PMID: 35695377 DOI: 10.1002/tcr.202200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Metal-Organic Frameworks (MOFs), a novel class of porous extended crystalline structures, are favored in different fields of heterogeneous catalysis, CO2 separation and conversion, and energy storage (supercapacitors) due to their convenience of synthesis, structural tailor-ability, tunable pore size, high porosity, large specific surface area, devisable structures, and adjustable compositions. Nickel (Ni) is a ubiquitous element extensively applied in various fields of catalysis and energy storage due to its low cost, high abundance, thermal and chemical stability, and environmentally benign nature. Ni-based MOFs and their derivatives provide us with the opportunity to modify different properties of the Ni center to improve their potential as heterogeneous catalysts or energy storage materials. The recent achievements of Ni-MOFs and their derivatives as catalysts, membrane materials for CO2 separation and conversion, electrode materials and their respective performance have been discussed in this review.
Collapse
Affiliation(s)
- Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
15
|
Newman AD, Wang Y, Orr SA, Wilson K, Lee AF. Rhodium promoted heteropolyacid catalysts for low temperature methanol carbonylation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00254j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh(OAc)2/HPW/SiO2 is an effective bifunctional catalyst for the halide-free carbonylation of methanol to methyl acetate and acetic acid.
Collapse
Affiliation(s)
| | - Yuan Wang
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Samantha A. Orr
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Karen Wilson
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Adam F. Lee
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|