1
|
Bezvikonnyi O, Durgaryan R, Tamulevicius T, Volyniuk D, Jurkeviciute A, Simokaitiene J, Danyliv Y, Vardanyan S, Macionis S, Vidas Grazulevicius J. Effects of carbazolyl and diphenylamino substituents bearing methoxy groups on the performance of hole-transporting materials in OLEDs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124713. [PMID: 38943758 DOI: 10.1016/j.saa.2024.124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Newly designed and synthesized derivatives of pentaphenylbenzene with methoxy-substituted carbazolyl or diphenylamino moieties were investigated to estimate their applicability as hole transport materials. Both the compounds exhibit high thermal stability. The intramolecular charge transfer is blocked for the film of the compound containing diphenylamino groups. The intermolecular charge transfer is induced in the film of carbazolyl-containing compound. The derivative of pentaphenylbenzene and diphenylamine exhibits higher hole drift mobility (2.4·10-3 cm2/V·s at the electric field of 5.5·105 V/cm) and by 0.1 eV lower ionization potential than the carbazolyl-containing compound. Both the compounds were utilized as hole-transporting materials in a series of organic light emitting diodes (OLEDs) based on of thermally activated delayed fluorescence. With the maximum values of external quantum efficiency of 25.9 % and power efficiency of 43.4 lm/W, OLEDs containing the layers of the synthesized compounds outperformed the device based on TCTA by 4 %, without the change in spectral properties. Variable angle spectroscopic ellipsometry revealed the moderate average roughness of the films of the compound deposited by the thermal vacuum evaporation technique with an arithmetic mean deviation of not more than 0.8 nm. The prominent hole transport characteristics of the compounds make them good candidates for utilization in optoelectronic devices.
Collapse
Affiliation(s)
- Oleksandr Bezvikonnyi
- Department of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Studentų g. 50, LT-51368 Kaunas, Lithuania; Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania.
| | - Ranush Durgaryan
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemistry, Yerevan State University, A. Manoogian 1, 0025 Yerevan, Armenia; Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 751 20 Uppsala, Sweden
| | - Tomas Tamulevicius
- Department of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Studentų g. 50, LT-51368 Kaunas, Lithuania; Institute of Materials Science, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Ausrine Jurkeviciute
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Jurate Simokaitiene
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Yan Danyliv
- Department of Electronic Engineering, Institute of Telecommunications, Radioelectronics and Electronic Engineering, Lviv Polytechnic National University, Stepan Bandera 12, 79013 Lviv, Ukraine
| | - Shushanna Vardanyan
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania; Department of Organic Chemistry, Faculty of Chemistry, Yerevan State University, A. Manoogian 1, 0025 Yerevan, Armenia
| | - Simas Macionis
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania.
| |
Collapse
|
2
|
Cardona-Lamarca T, Baum TY, Zaffino R, Herrera D, Pfattner R, Gómez-Coca S, Ruiz E, González-Campo A, van der Zant HSJ, Aliaga-Alcalde N. Experimental and theoretical studies of the electronic transport of an extended curcuminoid in graphene nano-junctions. Chem Sci 2024:d4sc04969a. [PMID: 39309093 PMCID: PMC11409653 DOI: 10.1039/d4sc04969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Exploiting the potential of curcuminoids (CCMoids) as molecular platforms, a new 3.53 nm extended system (pyACCMoid, 2) has been designed in two steps by reacting a CCMoid with amino-terminal groups (NH2-CCMoid, 1, of 1.79 nm length) with polycyclic aromatic hydrocarbon (PAH) aldehydes. CCMoid 2 contains pyrene units at both ends as anchoring groups to optimize its trapping in graphene nano-junctions created by feedback-controlled electro-burning. The measured I-V characteristics show gate-dependent behaviour at room temperature and 10 K, with increased conductance values compared to shorter CCMoids previously reported, and in agreement with DFT calculations. Our results show that the adjusted molecular design improves the conductance, as system 2 separates the conductive backbone from the anchor groups, which tend to adopt a planar configuration upon contact with the graphene electrodes. DFT calculations using Green functions of a set of different molecular conformations of 2 on graphene electrodes show a direct relationship between the units (e.g. pyrene, amide, etc.), in the molecule, through which electrons are injected and the conductance values; where the size of the spacing between the graphene electrodes contributes but is not the dominant factor, and thus, counter-intuitively the smallest spacing gives one of the lowest conductance values.
Collapse
Affiliation(s)
- Teresa Cardona-Lamarca
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autonoma de Barcelona 08913 Bellaterra Spain
| | - Thomas Y Baum
- Kavli Institute of Nanoscience, Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands
| | - Rossella Zaffino
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autonoma de Barcelona 08913 Bellaterra Spain
| | - Daniel Herrera
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autonoma de Barcelona 08913 Bellaterra Spain
| | - Raphael Pfattner
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autonoma de Barcelona 08913 Bellaterra Spain
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut de Química Teòrica i Computacional, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut de Química Teòrica i Computacional, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Arántzazu González-Campo
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autonoma de Barcelona 08913 Bellaterra Spain
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology Lorentzweg 1 2628 CJ Delft The Netherlands
| | - Núria Aliaga-Alcalde
- ICMAB-CSIC (Institut de Ciència dels Materials de Barcelona), Campus de la Universitat Autonoma de Barcelona 08913 Bellaterra Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançat) Passeig Lluís Companys 23 08018 Barcelona Spain
| |
Collapse
|
3
|
Choi KR, Li S, Park DH, Joo BC, Lee H, Kang ESH, Nic Chormaic S, Wu JW, D’Aléo A, Lee YU. Photoluminescence lifetime engineering via organic resonant films with molecular aggregates. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1033-1037. [PMID: 39634005 PMCID: PMC11501593 DOI: 10.1515/nanoph-2023-0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2024]
Abstract
Manipulating the spontaneous emission rate of fluorophores is vital in creating bright incoherent illumination for optical sensing and imaging, as well as fast single-photon sources for quantum technology applications. This can be done via increasing the Purcell effect by using non-monolithic optical nanocavities; however, achieving the desired performance is challenging due to difficulties in fabrication, precise positioning, and frequency tuning of cavity-emitter coupling. Here, we demonstrate a simple approach to achieve a wavelength-dependent photoluminescence (PL) lifetime modification using monolithic organic molecular aggregates films. These single monolithic organic films are designed to have a Lorentzian dispersion, including epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) spectral regions with increased and decreased photonic density of states, respectively. This dispersion leads to enhanced and depressed PL decay rates at different wavelengths. Both time-resolved photoluminescence (TRPL) and fluorescence lifetime imaging microscopy (FLIM) measurements are implemented to verify the validity of this approach. This approach offers a promising way to design dual-functional optical sources for a variety of applications, including bioimaging, sensing, data communications, and quantum photonics applications.
Collapse
Affiliation(s)
- Kyu-Ri Choi
- Chungbuk National University, Cheongju, Republic of Korea
| | - Shilong Li
- Okinawa Institure of Science and Technology Graduate University, Onna, Japan
| | - Dong Hee Park
- Chungbuk National University, Cheongju, Republic of Korea
| | - Bin Chan Joo
- Chungbuk National University, Cheongju, Republic of Korea
| | - Hojun Lee
- Chungbuk National University, Cheongju, Republic of Korea
| | | | - Síle Nic Chormaic
- Okinawa Institure of Science and Technology Graduate University, Onna, Japan
| | | | | | - Yeon Ui Lee
- Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Choi KR, Kim M, Wu JW, D’Aléo A, Lee YU. Directive emission from polymeric fluorophore with epsilon-near-zero squaraine molecular film. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2471-2478. [PMID: 39633753 PMCID: PMC11501559 DOI: 10.1515/nanoph-2022-0763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/17/2023] [Indexed: 12/07/2024]
Abstract
Enhanced directionality of photoluminescence emission has attracted attention due to its diverse application areas ranging from single-photon sources to fluorescence sensing and bio-imaging. Utilization of null phase advance in epsilon-near-zero (ENZ) medium is an important scheme to achieve the directive emission. Despite various designs proposed for ENZ-based directive emission, most of the ENZ mediums are restricted to subwavelength structures of metallic plasmonics or inorganic dielectrics. Here, we introduce an organic ENZ film placed on top of a polymeric fluorophore film to demonstrate a directive emission. By taking advantage of the structural coherence in the P3HT film and the ENZ response in the squaraine molecular film, 42 % increase in directive emission is achieved. Capability to control directive emission with organic ENZ films is highly useful in applications requiring bio-compatibility of a fluorophore-embedding medium.
Collapse
Affiliation(s)
- Kyu-Ri Choi
- Department of Physics, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| | - Minjae Kim
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Jeong Weon Wu
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Anthony D’Aléo
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000Strasbourg, France
| | - Yeon Ui Lee
- Department of Physics, Chungbuk National University, Cheongju, Chungbuk, 28644, South Korea
| |
Collapse
|
5
|
Riba-López D, Zaffino R, Herrera D, Matheu R, Silvestri F, Ferreira da Silva J, Sañudo EC, Mas-Torrent M, Barrena E, Pfattner R, Ruiz E, González-Campo A, Aliaga-Alcalde N. Dielectric behavior of curcuminoid polymorphs on different substrates by direct soft vacuum deposition. iScience 2022; 25:105686. [PMID: 36578318 PMCID: PMC9791350 DOI: 10.1016/j.isci.2022.105686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Our work examines the structural-electronic correlation of a new curcuminoid, AlkCCMoid, as a dielectric material on different substrates. For this purpose, we show a homemade sublimation method that allows the direct deposition of molecules on any type of matrix. The electronic properties of AlkCCMoid have been evaluated by measurements on single crystals, microcrystalline powder, and sublimated samples, respectively. GIWAXS studies on surfaces and XRD studies on powder have revealed the existence of polymorphs and the effect that substrates have on curcuminoid organization. We describe the dielectric nature of our system and identify how different polymorphs can affect electronic parameters such as permittivity, all corroborated by DFT calculations.
Collapse
Affiliation(s)
- Daniel Riba-López
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain
| | - Rossella Zaffino
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain
| | - Daniel Herrera
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain
| | - Roc Matheu
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona Spain,Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Francesco Silvestri
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain
| | - Jesse Ferreira da Silva
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain,University of Southampton, Chemistry, Highfield, Southampton, UK
| | - Eva Carolina Sañudo
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028 Barcelona, Spain,Institut de Nanociència i Nanotecnologia. Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain
| | - Esther Barrena
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain
| | - Raphael Pfattner
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain,Corresponding author
| | - Eliseo Ruiz
- Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona Spain,Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, C/Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Arántzazu González-Campo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain,Corresponding author
| | - Núria Aliaga-Alcalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus Universitari, 08193 Bellaterra, Spain,ICREA (Institució Catalana de Recerca i Estudis Avançats) Passeig Lluïs Companys 23, 08010 Barcelona, Spain,Corresponding author
| |
Collapse
|