1
|
Li F, An Y, Xue J, Fu H, Wang H, Cao P, Zhang M, Fei P, Liu M, Zhao F. Cellulose Acetate Membranes: Antibacterial Strategy and Application-A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409728. [PMID: 39679825 DOI: 10.1002/smll.202409728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Indexed: 12/17/2024]
Abstract
Developing antibacterial and biodegradable cellulose acetate (CA) membrane materials is one of the main challenges in multiple application fields. CA membrane materials are widely used in gas purification, water purification, and biomedical fields due to their environmental friendliness, high chemical and mechanical stability, excellent processability, and low cost. However, antibacterial modification of CA membrane materials to enhance their utilization value in the application process has always been the direction of researchers' efforts. This review focuses on the preparation and application of antibacterial CA and its derivatives membranes, especially the types and introduction methods of antibacterial agents. First, a brief introduction of CA-based polymer membranes is presented, followed by an overview of the antibacterial agent types and their introduction methods, and antibacterial mechanisms. After that, various membranes prepared using CA-based polymers as the main matrix or as additives are discussed. Then, specific applications of antibacterial CA-based membrane materials in water purification, gas purification, biomedical, food packaging, and other fields are outlined.
Collapse
Affiliation(s)
- Fu Li
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Yaxin An
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Jinhong Xue
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hui Fu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hongbo Wang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Puzhi Cao
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Man Zhang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Mei Liu
- College of Textiles and Apparel, Quanzhou Normal University, No. 398 Donghai, Quanzhou City, Fujian, 362000, P. R. China
| | - Fulai Zhao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| |
Collapse
|
2
|
Yapa P, Munaweera I, Weerasekera MM, Weerasinghe L. Synergistic antimicrobial nanofiber membranes based on metal incorporated silica nanoparticles as advanced antimicrobial layers. RSC Adv 2024; 14:33919-33940. [PMID: 39463479 PMCID: PMC11503530 DOI: 10.1039/d4ra05052e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
In this post-new-normal era, the public prioritizes preventive measures over curing, which is a constructive approach to staying healthy. In this study, an innovative antimicrobial membrane material has been developed, showcasing the promising potential for various applications. The metal-doped silica nanoparticles (Ag, Cu, and Co) were incorporated into a cellulose acetate (CA) polymer-based nanofiber membrane using the electrospinning technique. The metal nanoparticles were doped into a silanol network of silica nanoparticles. The fabricated membranes underwent detailed characterization using a wide range of techniques including PXRD, FTIR, Raman, SEM, TEM, TGA, and tensile testing. These analyses provided compelling evidence confirming the successful incorporation of metal-doped silica nanoparticles (Ag, Cu, and Co) into cellulose-based nanofibers. The band gap energies of the fabricated CA mats lie below 3.00 eV, confirming that they are visible light active. The trimetallic silica nanohybrid exhibited the lowest band gap energy of 2.84 eV, proving the self-sterilizing ability of the CA mats. The DPPH assay further confirmed the best radical scavenging activity by the trimetallic silica nanohybrid incorporated nanofiber mat (91.77 ± 0.88%). The antimicrobial activity was assessed by using the bacterial ATCC strains of Staphylococcus aureus, Streptococcus pneumoniae, MRSA (Methicillin-resistant Staphylococcus aureus), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and fungal strains; quality control samples of Trichophyton rubrum, Microsporum gypsium, and Aspergillus niger, as well as the ATCC strain of Candida albicans. The trimetallic silica nanohybrid-incorporated CA membranes demonstrated the most significant inhibition zones. The reported findings substantiate the self-sterilizing mat's viability, affordability, efficacy against a broad spectrum of microbial strains, cost-effectiveness, and biodegradability. Furthermore, the mat serves as a dual-purpose physical and biological barrier against microbes, affirming its potential impact.
Collapse
Affiliation(s)
- Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| |
Collapse
|
3
|
Fahmi MZ, Sugito SFA, Wibrianto A, Novania S, Widyastuti S, Ahmad MA, Sakti SCW, Voon LH. Unraveling In vivo Potential of Curcumin-loaded Graphene Quantum Dots on Drug Delivery and Release Kinetics Aspects of Cancer Treatment. Nanotheranostics 2024; 8:521-534. [PMID: 39507106 PMCID: PMC11539179 DOI: 10.7150/ntno.96559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study introduces an innovative magnetic-based multifunctional anti-cancer drug carrier aiming to enhance the efficacy of curcumin in cancer therapy. The research investigates the potential of Graphene Quantum Dots (GQDs) as a curcumin drug delivery system for inhibiting in vivo cancer growth. GQDs with a particle diameter below 10 nm were synthesized via hydrothermal and Hummers methods, exhibiting homogeneity and crystalline structure according to AFM and XRD analyses. FTIR analysis confirmed functionalization success, revealing the formation of bonds between GQDs and curcumin. The optical properties of GQDs were assessed using a UV-Vis spectrophotometer and spectrofluorometer, resulting in vigorous fluorescence with a quantum yield of 1.32%. Subsequently, loading curcumin onto GQDs (CQDs/cur) resulted in an efficient system for delivering the anti-cancer drug, demonstrating significant in vivo efficacy. It was indicated by reduced tumor diameter and increased body weight in mice. Furthermore, the release kinetics of curcumin from GQDs were analyzed using the Peppas-Sahlin equation under varying pH conditions (4, 7, and 9), revealing the highest release rate in acidic conditions. In conclusion, this study highlights the potential of GQDs as highly efficient carriers for targeted curcumin delivery, showcasing promising prospects in cancer treatment.
Collapse
Affiliation(s)
- Mochamad Z. Fahmi
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Siti F. A. Sugito
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Aswandi Wibrianto
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Siska Novania
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
| | - Shinta Widyastuti
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
| | - Musbahu Adam Ahmad
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
| | - Satya C. W. Sakti
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Lee H. Voon
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Wibrianto A, Putri FSD, Nisa UK, Mahyahani N, Sugito SFA, Wardana AP, Sakti SCW, Chang JY, Fahmi MZ. Strategic Assessment of Boron-Enriched Carbon Dots/Naproxen: Diagnostic, Toxicity, and In Vivo Therapeutic Evaluation. Mol Pharm 2024; 21:801-812. [PMID: 38217878 DOI: 10.1021/acs.molpharmaceut.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Cancer is a significant global public health concern, ranking as the leading cause of mortality worldwide. This study thoroughly explores boron-doped carbon dots (B-CDs) through a simple/rapid microwave-assisted approach and their versatile applications in cancer therapy. The result was highly uniform particles with an average diameter of approximately 4 nm. B-CDs exhibited notable properties, including strong fluorescence with a quantum yield of 33%. Colloid stability tests revealed their robustness within a pH range of 6-12, NaCl concentrations up to 0.5 M, and temperatures ranging from 30 to 60 °C. The study also delved into the kinetics of naproxen release from B-CDs as a drug delivery system. The loading efficacy of naproxen exceeded 55.56%. Under varying pH conditions, the release of naproxen from B-CDs conformed to the Peppas-Sahlin model, demonstrating the potential of Naproxen-loaded CDs for cancer drug delivery. In vitro cytotoxicity assessments, conducted using the CCK-8 Assay and flow cytometry, consistently indicated low toxicity with average cell viability exceeding 80%. An in vivo toxicity test on female mice administered 20 mg/kg of B-CDs for 31 days revealed reversible histological changes in the liver and kidneys, while the pancreas remained unaffected. Importantly, B-CDs did not impact the mice's physical behavior, body weight, or survival. In vivo experiments targeting benzo(a)pyrene-induced fibrosarcoma demonstrated the efficacy of B-CDs as naproxen carriers in the treatment of cancer. This in vivo study provides a thorough comprehension of B-CDs synthesis and toxicity and their potential applications in cancer therapy and drug delivery systems.
Collapse
Affiliation(s)
- Aswandi Wibrianto
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan Republic of China
| | | | - Ummi K Nisa
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
| | - Nila Mahyahani
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
| | - Siti F A Sugito
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Andika P Wardana
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
| | - Satya C W Sakti
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106335, Taiwan Republic of China
| | - Mochamad Z Fahmi
- Department of Chemistry, University Airlangga, Surabaya 60115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
5
|
Amarjargal A, Moazzami Goudarzi Z, Cegielska O, Gradys A, Kolbuk D, Kalaska B, Ruszczyńska A, Sajkiewicz P. A facile one-stone-two-birds strategy for fabricating multifunctional 3D nanofibrous scaffolds. Biomater Sci 2023; 11:5502-5516. [PMID: 37378581 DOI: 10.1039/d3bm00837a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Local bacterial infections lead to delayed wound healing and in extreme cases, such as diabetic foot ulcers, to non-healing due to the impaired cellular function in such wounds. Thus, many scientists have focused on developing advanced therapeutic platforms to treat infections and promote cellular proliferation and angiogenesis. This study presents a facile approach for designing nanofibrous scaffolds in three dimensions (3D) with enhanced antibacterial activity to meet the need of treating chronic diabetic wounds. Being a cationic surfactant as well as an antimicrobial agent, octenidine (OCT) makes a 2D membrane hydrophilic, enabling it to be modified into a 3D scaffold in a "one stone, two birds" manner. Aqueous sodium borohydride (NaBH4) solution plays a dual role in the fabrication process, functioning as both a reducing agent for the in situ synthesis of silver nanoparticles (Ag NPs) anchored on the nanofiber surface and a hydrogen gas producer for expanding the 2D membranes into fully formed 3D nanofiber scaffolds, as demonstrated by morphological analyses. Various techniques were used to characterize the developed scaffold (e.g., SEM, XRD, DSC, FTIR, and surface wettability), demonstrating a multilayered porous structure and superhydrophilic properties besides showing sustained and prolonged release of OCT (61% ± 1.97 in 144 h). Thanks to the synergistic effect of OCT and Ag NPs, the antibacterial performance of the 3D scaffold was significantly higher than that of the 2D membrane. Moreover, cell viability was studied in vitro on mouse fibroblasts L929, and the noncytotoxic character of the 3D scaffold was confirmed. Overall, it is shown that the obtained multifunctional 3D scaffold is an excellent candidate for diabetic wound healing and skin repair.
Collapse
Affiliation(s)
- Altangerel Amarjargal
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
- Power Engineering School, Mongolian University of Science and Technology, 8th khoroo, Baga toiruu, Sukhbaatar district, Ulaanbaatar 14191, Mongolia.
| | - Zahra Moazzami Goudarzi
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Olga Cegielska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki I Wigury 101, 02-089 Warszawa, Poland
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland.
| |
Collapse
|
6
|
Zhou W, Feng Y, Li M, Zhang C, Qi H. Tracking the Dissolution Surface Kinetics of a Single Fluorescent Cyclodextrin Metal-Organic Framework by Confocal Laser Scanning Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6681-6690. [PMID: 37140168 DOI: 10.1021/acs.langmuir.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The understanding of the dissolution processes of solids is important for the design and synthesis of solids in a controlled and precise manner and for predicting their fate in the aquatic environment. We report herein single-particle-based confocal laser scanning microscopy (CLSM) for tracking the dissolution surface kinetics of a single fluorescent cyclodextrin metal-organic framework (CD-MOF). As a proof of concept, CD-MOF containing fluorescein, named as CD-MOF⊃FL, was synthesized by encapsulating fluorescein into the interior of CD-MOF via a vapor diffusion method and used as a single-particle dissolution model because of its high FL efficiency and unique structure. The morphology of CD-MOF⊃FL and the distribution of fluorescein within CD-MOF⊃FL were characterized. The growth and dissolution processes of CD-MOF⊃FL at the single-particle level were visualized and quantified for the first time by recording the change of the fluorescence emission. Three processes, including nucleation, germination growth, and saturation stage, were found in the growth of CD-MOF⊃FL, and the growth kinetics followed Avrami's model. The dissolution rate at the face of a single CD-MOF⊃FL crystal was slower than that of its arris, and the dissolution rate of the CD-MOF⊃FL crystal was increased with the increase of the water amount in methanol solution. The dissolution process of the CD-MOF⊃FL crystal was a competitive process of erosion and diffusion in different methanol aqueous solutions, and the dissolution kinetics followed the Korsmeyer-Peppas model. These results offer new insights into the nature of dissolution kinetics of CD-MOF⊃FL and provide new venues for the quantitative analysis of solid dissolution and growth at the single-particle level.
Collapse
Affiliation(s)
- Wenshuai Zhou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Yanlong Feng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Meng Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| |
Collapse
|
7
|
Advances in the Physico-Chemical, Antimicrobial and Angiogenic Properties of Graphene-Oxide/Cellulose Nanocomposites for Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15020338. [PMID: 36839660 PMCID: PMC9961167 DOI: 10.3390/pharmaceutics15020338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Graphene oxide (GO) and its reduced form (rGO) have recently attracted a fascinating interest due to their physico-chemical properties, which have opened up new and interesting opportunities in a wide range of biomedical applications, such as wound healing. It is worth noting that GO and rGO may offer a convenient access to its ready dispersion within various polymeric matrices (such as cellulose and its derivative forms), owing to their large surface area, based on a carbon skeleton with many functional groups (i.e., hydroxyl, carboxyl, epoxy bridge, and carbonyl moieties). This results in new synergic properties due to the presence of both components (GO or rGO and polymers), acting at different length-scales. Furthermore, they have shown efficient antimicrobial and angiogenic properties, mostly related to the intracellular formation of reactive oxygen species (ROS), which are advantageous in wound care management. For this reason, GO or rGO integration in cellulose-based matrixes have allowed for designing highly advanced multifunctional hybrid nanocomposites with tailored properties. The current review aims to discuss a potential relationship between structural and physico-chemical properties (i.e., size, edge density, surface chemistry, hydrophilicity) of the nanocomposites with antimicrobials and angiogenic mechanisms that synergically influence the wound healing phenomenon, by paying particular attention to recent findings of GO or rGO/cellulose nanocomposites. Accordingly, after providing a general overview of cellulose and its derivatives, the production methods used for GO and rGO synthesis, the mechanisms that guide antimicrobial and angiogenic processes of tissue repair, as well as the most recent and remarkable outcomes on GO/cellulose scaffolds in wound healing applications, will be presented.
Collapse
|
8
|
Trache D, Tarchoun AF, Abdelaziz A, Bessa W, Hussin MH, Brosse N, Thakur VK. Cellulose nanofibrils-graphene hybrids: recent advances in fabrication, properties, and applications. NANOSCALE 2022; 14:12515-12546. [PMID: 35983896 DOI: 10.1039/d2nr01967a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the fast-developing social economy and the acceleration of industrialization, seeking effective renewable, sustainable, and environmentally friendly resources that show promising properties is an urgent task and a crucial means to achieve sustainable progress in the face of the growing depletion of non-renewable resources and the deterioration of environmental issues. Cellulose nanofibrils (CNFs) are natural polymeric nanomaterials with excellent biocompatibility, biodegradability, good mechanical features, high strength, low density, high specific surface area, and tunable chemistry. Their combination with other nanomaterials, such as graphene derivatives (GNMs), has been demonstrated to be effective since they produce hybrids with outstanding physicochemical properties, tailorable functionality, and high performance. In this review, recent advances in the preparation, modification, and emerging application of CNFs/GNMs hybrids are described and discussed using the latest studies. First, the concise background of nanocellulose and graphene derivatives is provided, followed by the interfacial interactions between CNFs and GNMs. The different hybrids exhibit great promise in separation, adsorption, optics, flexible electronics, energy storage, thermal management, barrier and packaging, and electromagnetic shielding. The main challenges that inhibit the applicability of these hybrids are finally highlighted, and some perspectives for future research directions are provided.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - Ahmed Fouzi Tarchoun
- Energetic Propulsion Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria
| | - Amir Abdelaziz
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046, Algiers, Algeria.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Bld. des Aiguillettes, F-54500, Vandœuvre-lès-Nancy, France
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007 Uttarakhand, India
- Centre for Research and Development, Chandigarh University, Mohali, 140413 Punjab, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| |
Collapse
|
9
|
Fahmi MZ, Machmudah N, Indrawasih P, Wibrianto A, Ahmad MA, Sakti SCW, Chang JY. Naproxen release from carbon dot coated magnetite nanohybrid as versatile theranostics for HeLa cancer cells. RSC Adv 2022; 12:32328-32337. [PMID: 36425684 PMCID: PMC9650478 DOI: 10.1039/d2ra05673a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nanohybrid magnetite carbon dots (Fe3O4@CDs) were successfully synthesized to improve their applicability in multi-response bioimaging. The nanohybrid was prepared via pyrolysis and further loaded with naproxen (NAP) to promote drug delivery features. The characterization of the synthesized Fe3O4@CDs demonstrated the existence of Fe3O4 crystals by matching with JCPDS 75-0033 and its narrow size distribution at 11.30 nm; further, FTIR spectra confirmed the presence of Fe–O groups, C–O stretching, C–H sp2, and C–O bending, along with dual-active fluorescence and magnetic responses. The nanohybrids also exhibit particular properties such as a maximum wavelength of 230.5 nm, maximum emission in the 320–420 nm range, and slight superparamagnetic reduction (Fe3O4: 0.93620 emu per g; Fe3O4@CDs: 0.64784 emu per g). The cytotoxicity assessment of the nanohybrid revealed an excellent half-maximal inhibitory concentration (IC50) of 17 671.5 ± 1742.6 μg mL−1. Then, the incorporation of NAP decreased the cell viability to below 10%. The kinetic release properties of NAP are also confirmed as pH-dependent, and they follow the Korsmeyer–Peppas kinetics model. These results indicated that the proposed Fe3O4@CDs can be used as a new model for theranostic treatment. Nanohybrid magnetite carbon dots (Fe3O4@CDs) were successfully synthesized to improve their applicability in multi-response bioimaging.![]()
Collapse
Affiliation(s)
- Mochamad Z. Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Putri Indrawasih
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
| | - Aswandi Wibrianto
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| | - Musbahu A. Ahmad
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
| | - Satya C. W. Sakti
- Department of Chemistry, Universitas Airlangga, Surabaya 61115, Indonesia
- Supra Modification Nano-Micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jia-yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
| |
Collapse
|