1
|
Wang P, Song X, Liang Q. Molecular Docking Studies and In Vitro Activity of Pancreatic Lipase Inhibitors from Yak Milk Cheese. Int J Mol Sci 2025; 26:756. [PMID: 39859469 PMCID: PMC11771213 DOI: 10.3390/ijms26020756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic lipase serves as a primary trigger for hyperlipidemia and is also a crucial target in the inhibition of hypercholesterolemia. By synthesizing anti-hypercholesterolemic drugs such as atorvastatin, which are used to treat hypercholesterolemia, there were some side effects associated with the long-term use of statins. Based on this idea, in the present study, we identified peptides that inhibited PL by virtual screening and in vitro activity assays. In addition, to delve into the underlying mechanisms, we undertook a dual investigative approach involving both molecular docking analyses and molecular dynamics simulations. The results showed that peptides RK7, KQ7, and TL9, all with molecular weights of <1000 Da and a high proportion of hydrophobic amino acids, inhibited PL well. Molecular docking and molecular dynamics showed that peptides RK7, KQ7, and TL9 bound to important amino acid residues of PL, such as Pro and Leu, through hydrogen bonding, hydrophobic interactions, salt bridges, and π-π stacking to occupy the substrate-binding site, which inhibited PL and identified them as potential PL inhibitors. In vitro tests showed that the IC50 of RK7 and KQ7 on PL were 0.690 mg/mL and 0.593 mg/mL, respectively, and the inhibitory effects of RK7 and KQ7 on PL were significantly enhanced after simulated gastrointestinal digestion. Our results suggested that peptides RK7 and KQ7 from yak milk cheese can be identified as a novel class of potential PL inhibitors.
Collapse
Affiliation(s)
| | | | - Qi Liang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (X.S.)
| |
Collapse
|
2
|
Rahman MA, Lee SH, Park HS, Min CW, Woo JH, Choi BR, Rahman MM, Lee KW. Light Quality Plays a Crucial Role in Regulating Germination, Photosynthetic Efficiency, Plant Development, Reactive Oxygen Species Production, Antioxidant Enzyme Activity, and Nutrient Acquisition in Alfalfa. Int J Mol Sci 2025; 26:360. [PMID: 39796215 PMCID: PMC11720064 DOI: 10.3390/ijms26010360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 01/13/2025] Open
Abstract
Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa (Medicago sativa L.). Fluorescence staining showed that red light significantly triggered the oxidative stress indicators compared to blue and white light, while the combined red and blue light treatment significantly reduced the ROS (O2•-, H2O2) intensity in alfalfa seedlings. Interestingly, the combined light treatment significantly boosted the seed germination rate (%), maximum photochemical quantum yield of PSII (Fv/Fm), leaf greenness (SPAD score), photosynthetic pigment levels (chlorophyll a, chlorophyll b, and carotenoids), and plant biomass yield in alfalfa seedlings. The red and/or combined (red+blue) light treatments significantly regulated antioxidant enzymes (SOD, CAT, APX, and GR) and the expression of genes related to the ascorbate-glutathione (AsA-GSH) pathway, including monodehydroascorbate reductase (MsMDHAR), dehydroascorbate reductase (MsDHAR), ascorbate peroxidase (MsAPX), and glutathione reductase (MsGR). These results indicate that light quality is crucial for regulating the morphological, physiological, and molecular traits linked to alfalfa improvement. These findings suggest a new approach to enhancing the adaptation, as well as the morphological and agronomic yield, of alfalfa and forage legumes through light-quality-mediated improvement.
Collapse
Affiliation(s)
- Md Atikur Rahman
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
- ABEx Bio-Research Center, Dhaka 1230, Bangladesh
| | - Sang-Hoon Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Hyung Soo Park
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Chang-Woo Min
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Jae Hoon Woo
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Bo Ram Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA;
| | - Ki-Won Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| |
Collapse
|
3
|
Serrano GP, Echavarría CF, Mejias SH. Development of artificial photosystems based on designed proteins for mechanistic insights into photosynthesis. Protein Sci 2024; 33:e5164. [PMID: 39276008 PMCID: PMC11400635 DOI: 10.1002/pro.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.
Collapse
Affiliation(s)
- Gonzalo Pérez Serrano
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Claudia F. Echavarría
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Sara H. Mejias
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| |
Collapse
|
4
|
Wang P, Song X, Liang Q. Study on the Inhibitory Effect of Bioactive Peptides Derived from Yak Milk Cheese on Cholesterol Esterase. Foods 2024; 13:2970. [PMID: 39335898 PMCID: PMC11431439 DOI: 10.3390/foods13182970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The bioactive peptides derived from yak milk cheese exhibited cholesterol-lowering properties. However, there was limited research on their inhibitory effects on cholesterol esterase (CE) and elucidation of their potential inhibitory mechanisms. In this study, we identified CE-inhibiting peptides through virtual screening and in vitro assays. Additionally, molecular docking and molecular dynamics studies were conducted to explore the mechanisms. The results indicated that peptides RK7 (RPKHPIK), KQ7 (KVLPVPQ), QP13 (QEPVLGPVRGPFP), TL9 (TPVVVPPFL), VN10 (VYPFPGPIPN), LQ10 (LPPTVMFPPQ), and SN12 (SLVYPFPGPIPN) possessed molecular weights of less than 1.5 kDa and a high proportion of hydrophobic amino acids, demonstrating notable inhibitory effects on CE. Molecular docking and dynamics revealed that peptides RK7, KQ7, QP13, and VN10 bound to key amino acid residues Arg423, His435, and Ser422 of CE through hydrogen bonds, hydrophobic interactions, salt bridges, and π-π stacking, occupying the substrate-binding site and exerting inhibitory effects on CE. The four peptides were further synthesized to verify their CE-inhibitory effects in vitro. RK7, KQ7, QP13, and VN10 exhibited inhibitory activity on CE with IC50 values of 8.16 × 10-7 mol/L, 8.10 × 10-7 mol/L, 4.63 × 10-7 mol/L, and 7.97 × 10-7 mol/L; RK7, KQ7, QP13, and VN10 were effective in inhibiting CE after simulated gastrointestinal digestion, especially with a significant increase in the inhibitory activity of KQ7 and RK7, respectively. Our findings suggested that bioactive peptides from yak milk cheese represented a novel class of potential CE inhibitors.
Collapse
Affiliation(s)
- Peng Wang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuemei Song
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qi Liang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
da Fonseca AM, Caluaco BJ, Madureira JMC, Cabongo SQ, Gaieta EM, Djata F, Colares RP, Neto MM, Fernandes CFC, Marinho GS, Dos Santos HS, Marinho ES. Screening of Potential Inhibitors Targeting the Main Protease Structure of SARS-CoV-2 via Molecular Docking, and Approach with Molecular Dynamics, RMSD, RMSF, H-Bond, SASA and MMGBSA. Mol Biotechnol 2024; 66:1919-1933. [PMID: 37490200 DOI: 10.1007/s12033-023-00831-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Severe Acute Respiratory Syndrome caused by a coronavirus is a recent viral infection. There is no scientific evidence or clinical trials to indicate that possible therapies have demonstrated results in suspected or confirmed patients. This work aims to perform a virtual screening of 1430 ligands through molecular docking and to evaluate the possible inhibitory capacity of these drugs about the Mpro protease of Covid-19. The selected drugs were registered with the FDA and available in the virtual drug library, widely used by the population. The simulation was performed using the MolAiCalD algorithm, with a Lamarckian genetic model (GA) combined with energy estimation based on rigid and flexible conformation grids. In addition, molecular dynamics studies were also performed to verify the stability of the receptor-ligand complexes formed through analyses of RMSD, RMSF, H-Bond, SASA, and MMGBSA. Compared to the binding energy of the synthetic redocking coupling (-6.8 kcal/mol/RMSD of 1.34 Å), which was considerably higher, it was then decided to analyze the parameters of only three ligands: ergotamine (-9.9 kcal/mol/RMSD of 2.0 Å), dihydroergotamine (-9.8 kcal/mol/RMSD of 1.46 Å) and olysio (-9.5 kcal/mol/RMSD of 1.5 Å). It can be stated that ergotamine showed the best interactions with the Mpro protease of Covid-19 in the in silico study, showing itself as a promising candidate for treating Covid-19.
Collapse
Affiliation(s)
- Aluísio Marques da Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis - MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Bernardino Joaquim Caluaco
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | | | - Sadrack Queque Cabongo
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Eduardo Menezes Gaieta
- Fundação Oswaldo Cruz - Fiocruz, R. São José, S/N - Precabura, Eusébio, Ceará, 61773-270, Brazil
| | - Faustino Djata
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Regilany Paulo Colares
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Moises Maia Neto
- Curso de Graduação Em Farmácia, Centro Universitário Fametro, Fortaleza, CE, Brazil
| | | | - Gabrielle Silva Marinho
- Faculdade de Filosofia, Dom Aureliano Matos - FAFIDAM, Universidade Estadual Do Ceará, Centro, Limoeiro Do Norte, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Faculdade de Filosofia, Dom Aureliano Matos - FAFIDAM, Universidade Estadual Do Ceará, Centro, Limoeiro Do Norte, CE, Brazil
| |
Collapse
|
6
|
Silva de Freitas Cesário HP, das Chagas Lima Pinto F, Marques Canuto K, Rocha Silveira E, Veras Wilke D, Gois Ferreira E, Marques da Fonseca A, Alves de Vasconcelos M, Teixeira EH, Deusdênia Loiola Pessoa O. Further Polycyclic Quinones of Micromonospora sp. Chem Biodivers 2024; 21:e202301771. [PMID: 38628065 DOI: 10.1002/cbdv.202301771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2023] [Accepted: 03/31/2024] [Indexed: 06/01/2024]
Abstract
The crude acetone extract of a marine Micromonospora sp. strain associated with Eudistoma vannnamei was fractioned with hexane and ethyl acetate. The crude extract and both soluble fractions were assayed against several bacteria strains. The new polycyclic quinones 12-hydroxy-9-propyltetracene-6,1-dione (1), 5,12-dihydroxy-4-methoxy-9-propyltetracene-5,12-dione (2), and 4,6-dihydroxy-3-methoxycarbonyl- methyl-6a-(oxobutyl)-5,12-anthraquinone (3), along with the known 4,6-dihydroxy-3-methoxycarbonyl-methyl-6a-(oxo-3-methyl-butyl)-5,12-anthraquinone (4) and 4,6-dihydroxy-3-methoxycarbonyl-methyl-6a-(oxopentyl)-5,12-anthraquinone (5) were isolated from the hexane-soluble fraction, while from the active ethyl acetate fraction were isolated the known 4,6,11-trihydroxy-9-propyltetracene-5,12-dione (6), 4-methoxy-9-propyltetracene-6,11-dione (7), 7,8,9,10-tetrahydro-9-hydroxy-4-methoxy-9-propyltetracene-6,11-dione (8), and 10β-carbomethoxy-7,8,9,10-tetrahydro-4,6,7α,9α,11-pentahydroxy-9-propyltetracene-5,12-dione (9). The structures of the new compounds were established by interpretation of HRMS and NMR techniques. A study of molecular docking was performed with the compounds from the active ethyl acetate fraction to correlate tentatively with the antimicrobial activity. Molecular docking, RMSD, RMSF, and MM-GBSA evaluations were performed to investigate the inhibitory activity of 6-8 against the protein PDB-codex 1MWT, being considered a promising target for studying drug development responsible for inhibiting replication of Staphylococcus aureus. Penicillin G was used as the standard inhibitory. Anthracyclinones 6-8 were the best hydrolase inhibitor with affinity energy -8.1 to -7.9 kcal/mol compared to penicillin G, which presented -6.9 kcal/mol. Both 8 and 7 present potent inhibitory effects against hydrolase through molecular dynamics simulation and exhibit favorable drug-like properties, promising new hydrolase blockers to fight bacterial infections from Staphylococcus aureus.
Collapse
Affiliation(s)
| | - Francisco das Chagas Lima Pinto
- Institute of Exact and Natural Sciences, University of International Integration of Afro-Brazilian Lusofonia, 62785-000, Acarape, CE, Brazil
| | | | - Ediberto Rocha Silveira
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil
| | - Diego Veras Wilke
- Department of Physiology and Pharmacology, Federal University of Ceará, 60165-085, Fortaleza, Ceará, Brazil
| | - Elthon Gois Ferreira
- Department of Physiology and Pharmacology, Federal University of Ceará, 60165-085, Fortaleza, Ceará, Brazil
| | - Aluísio Marques da Fonseca
- Institute of Exact and Natural Sciences, University of International Integration of Afro-Brazilian Lusofonia, 62785-000, Acarape, CE, Brazil
| | - Mayron Alves de Vasconcelos
- Integrated Laboratory of Biomolecules (LIBS), Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, CE, 62042-280, Brazil
- Faculty of Education of Itapipoca (FACEDI), State University of Ceará, Itapipoca, CE, 62500-000, Brazil
| | - Edson Holanda Teixeira
- Faculty of Education of Itapipoca (FACEDI), State University of Ceará, Itapipoca, CE, 62500-000, Brazil
| | - Otilia Deusdênia Loiola Pessoa
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, 60455-760, Brazil
| |
Collapse
|
7
|
Iwai M, Patel-Tupper D, Niyogi KK. Structural Diversity in Eukaryotic Photosynthetic Light Harvesting. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:119-152. [PMID: 38360524 DOI: 10.1146/annurev-arplant-070623-015519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/17/2024]
Abstract
Photosynthesis has been using energy from sunlight to assimilate atmospheric CO2 for at least 3.5 billion years. Through evolution and natural selection, photosynthetic organisms have flourished in almost all aquatic and terrestrial environments. This is partly due to the diversity of light-harvesting complex (LHC) proteins, which facilitate photosystem assembly, efficient excitation energy transfer, and photoprotection. Structural advances have provided angstrom-level structures of many of these proteins and have expanded our understanding of the pigments, lipids, and residues that drive LHC function. In this review, we compare and contrast recently observed cryo-electron microscopy structures across photosynthetic eukaryotes to identify structural motifs that underlie various light-harvesting strategies. We discuss subtle monomer changes that result in macroscale reorganization of LHC oligomers. Additionally, we find recurring patterns across diverse LHCs that may serve as evolutionary stepping stones for functional diversification. Advancing our understanding of LHC protein-environment interactions will improve our capacity to engineer more productive crops.
Collapse
Affiliation(s)
- Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| |
Collapse
|
8
|
Pradhan BL, Lodhi L, Dey KK, Ghosh M. Analyzing atomic scale structural details and nuclear spin dynamics of four macrolide antibiotics: erythromycin, clarithromycin, azithromycin, and roxithromycin. RSC Adv 2024; 14:17733-17770. [PMID: 38832242 PMCID: PMC11145140 DOI: 10.1039/d4ra00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
The current investigation centers on elucidating the intricate molecular architecture and dynamic behavior of four macrolide antibiotics, specifically erythromycin, clarithromycin, azithromycin, and roxithromycin, through the application of sophisticated solid-state nuclear magnetic resonance (SSNMR) methodologies. We have measured the principal components of chemical shift anisotropy (CSA) parameters, and the site-specific spin-lattice relaxation time at carbon nuclei sites. To extract the principal components of CSA parameters, we have employed 13C 2DPASS CP-MAS SSNMR experiments at two different values of magic angle spinning (MAS) frequencies, namely 2 kHz and 600 Hz. Additionally, the spatial correlation between 13C and 1H nuclei has been investigated using 1H-13C frequency switched Lee-Goldburg heteronuclear correlation (FSLGHETCOR) experiment at a MAS frequency of 24 kHz. Our findings demonstrate that the incorporation of diverse functional groups, such as the ketone group and oxime group with the lactone ring, exerts notable influences on the structure and dynamics of the macrolide antibiotic. In particular, we have observed a significant decrease in the spin-lattice relaxation time of carbon nuclei residing on the lactone ring, desosamine, and cladinose in roxithromycin, compared to erythromycin. Overall, our findings provide detailed insight into the relationship between the structure and dynamics of macrolide antibiotics, which is eventually correlated with their biological activity. This knowledge can be utilized to develop new and more effective drugs by providing a rational basis for drug discovery and design.
Collapse
Affiliation(s)
- Bijay Laxmi Pradhan
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University Varanasi-221005 Uttar-Pradesh India
- Department of Physics, Institute of Science, Banaras Hindu University Varanasi-221005 Uttar-Pradesh India
| | - Lekhan Lodhi
- Department of Zoology, Dr Harisingh Gour Central University Sagar-470003 Madhya-Pradesh India
| | - Krishna Kishor Dey
- Department of Physics, Dr Harisingh Gour Central University Sagar-470003 Madhya-Pradesh India
| | - Manasi Ghosh
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University Varanasi-221005 Uttar-Pradesh India
| |
Collapse
|
9
|
Melo RLF, Freire TM, Valério RBR, Neto FS, de Castro Bizerra V, Fernandes BCC, de Sousa Junior PG, da Fonseca AM, Soares JM, Fechine PBA, Dos Santos JCS. Enhancing biocatalyst performance through immobilization of lipase (Eversa® Transform 2.0) on hybrid amine-epoxy core-shell magnetic nanoparticles. Int J Biol Macromol 2024; 264:130730. [PMID: 38462111 DOI: 10.1016/j.ijbiomac.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Magnetic nanoparticles were functionalized with polyethylenimine (PEI) and activated with epoxy. This support was used to immobilize Lipase (Eversa® Transform 2.0) (EVS), optimization using the Taguchi method. XRF, SEM, TEM, XRD, FTIR, TGA, and VSM performed the characterizations. The optimal conditions were immobilization yield (I.Y.) of 95.04 ± 0.79 %, time of 15 h, ionic load of 95 mM, protein load of 5 mg/g, and temperature of 25 °C. The maximum loading capacity was 25 mg/g, and its stability in 60 days of storage showed a negligible loss of only 9.53 % of its activity. The biocatalyst demonstrated better stability at varying temperatures than free EVS, maintaining 28 % of its activity at 70 °C. It was feasible to esterify free fatty acids (FFA) from babassu oil with the best reaction of 97.91 % and ten cycles having an efficiency above 50 %. The esterification of produced biolubricant was confirmed by NMR, and it displayed kinematic viscosity and density of 6.052 mm2/s and 0.832 g/cm3, respectively, at 40 °C. The in-silico study showed a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-lipase combination suitable for esterification.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60440-554, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Roberta Bussons Rodrigues Valério
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró, RN CEP 59625-900, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza, CE CEP 60455760, Brazil
| | - Aluísio Marques da Fonseca
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró, RN CEP 59610-090, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil.
| |
Collapse
|
10
|
Cho WY, Lee PC. Metagenomic Analysis of Antarctic Ocean near the King Sejong Station Reveals the Diversity of Carotenoid Biosynthetic Genes. Microorganisms 2024; 12:390. [PMID: 38399795 PMCID: PMC10892129 DOI: 10.3390/microorganisms12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Carotenoids, biotechnologically significant pigments, play crucial biological roles in marine microorganisms. While various environments have been explored to understand the diversity of carotenoids and their biosynthesis, the Antarctic Ocean remains relatively under-investigated. This study conducted a metagenomic analysis of seawater from two depths (16 and 25 m) near the King Sejong Station in the Antarctic Ocean. The analysis revealed a rich genetic diversity underlying C40 (astaxanthin, myxol, okenone, spheroidene, and spirilloxanthin), C30 (diaponeurosporene, diapolycopene, and staphyloxanthin), and C50 (C.p. 450) carotenoid biosynthesis in marine microorganisms, with notable differential gene abundances between depth locations. Exploring carotenoid pathway genes offers the potential for discovering diverse carotenoid structures of biotechnological value and better understanding their roles in individual microorganisms and broader ecosystems.
Collapse
Affiliation(s)
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea;
| |
Collapse
|
11
|
Souza MAD, Rodrigues LG, Rocha JE, de Freitas TS, Bandeira PN, Marinho MM, Nunes da Rocha M, Marinho ES, Honorato Barreto AC, Coutinho HDM, Silva LMA, Julião MSDS, Marques Canuto K, Marques da Fonseca A, Teixeira AMR, Dos Santos HS. Synthesis, structural, characterization, antibacterial and antibiotic modifying activity, ADMET study, molecular docking and dynamics of chalcone ( E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps. J Biomol Struct Dyn 2024; 42:1670-1691. [PMID: 37222682 DOI: 10.1080/07391102.2023.2213777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 05/25/2023]
Abstract
Chalcones have an open chain flavonoid structure that can be obtained from natural sources or by synthesis and are widely distributed in fruits, vegetables, and tea. They have a simple and easy to handle structure due to the α-β-unsaturated bridge responsible for most biological activities. The facility to synthesize chalcones combined with its efficient in combating serious bacterial infections make these compounds important agents in the fight against microorganisms. In this work, the chalcone (E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HDZPNB) was characterized by spectroscopy and electronic methods. In addition, microbiological tests were performed to investigate the modulator potential and efflux pump inhibition on S. aureus multi-resistant strains. The modulating effect of HDZPNB chalcone in association with the antibiotic norfloxacin, on the resistance of the S. aureus 1199 strain, resulted in increase the MIC. In addition, when HDZPNB was associated with ethidium bromide (EB), it caused an increase in the MIC value, thus not inhibiting the efflux pump. For the strain of S. aureus 1199B, carrying the NorA pump, the HDZPNB associated with norfloxacin showed no modulatory, and when the chalcone was used in association with EB, it had no inhibitory effect on the efflux pump. For the tested strain of S. aureus K2068, which carries the MepA pump, it can be observed that the chalcone together the antibiotic resulted in an increase the MIC. On the other hand, when chalcone was used in association with EB, it caused a decrease in bromide MIC, equal to the reduction caused by standard inhibitors. Thus, these results indicate that the HDZPNB could also act as an inhibitor of the S. aureus gene overexpressing pump MepA. The molecular docking reveals that chalcone has a good binding energies -7.9 for HDZPNB/MepA complexes, molecular dynamics simulations showed that Chalcone/MetA complexes showed good stability of the structure in an aqueous solution, and ADMET study showed that the chalcone has a good oral bioavailability, high passive permeability, low risk of efflux, low clearance rate and low toxic risk by ingestion. The microbiological tests show that the chalcone can be used as a possible inhibitor of the Mep A efflux pump.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mikael Amaro de Souza
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Leilane Gomes Rodrigues
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Janaina Esmeraldo Rocha
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Thiago Sampaio de Freitas
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Paulo Nogueira Bandeira
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Márcia Machado Marinho
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | | | | | | | - Henrique Douglas Melo Coutinho
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | | | - Murilo Sergio da Silva Julião
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
- Graduate Program in Natural Science, State University of Ceará, Fortaleza, CE, Brazil
| | - Kirley Marques Canuto
- Multiusuary Laboratory of Natural Products Chemistry, Embrapa Tropical Agroindustry, Fortaleza, CE, Brazil
| | - Aluísio Marques da Fonseca
- Academic Master's Degree in Sociobiodiversity and Sustainable Technologies - MASTS, Institute of Engineering and Development Sustainable, University of International Integration of Afro-Brazilian Lusofonia, Acarape, CE, Brazil
| | - Alexandre Magno Rodrigues Teixeira
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Graduate Program in Natural Science, State University of Ceará, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Graduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
- Graduate Program in Natural Science, State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
12
|
Cesário HPSDF, Silva FCO, Ferreira MKA, de Menezes JESA, Dos Santos HS, Marques da Fonseca A, Nogueira CES, Marinho MM, Marinho ES, Teixeira AMR, Silveira ER, Pessoa ODL. Anxiolytic effects of N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)- N-methylformamide, a pyrroloformamide isolated from a marine Streptomyces sp., in adult zebrafish by the 5-HT system. J Biomol Struct Dyn 2024; 42:445-460. [PMID: 37038661 DOI: 10.1080/07391102.2023.2193988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023]
Abstract
General anxiety disorders are among the most prevalent mental health problems worldwide. The emergence and development of anxiety disorders can be due to genetic (30-50%) or non-genetic (50-70%) factors. Despite medical progress, available pharmacotherapies are sometimes ineffective or can cause undesirable side effects. Thus, it becomes necessary to discover new safe and effective drugs against anxiety. This study evaluated the anxiolytic effect in adult zebrafish (Danio rerio) of a natural pyrroloformamide (PFD), N-(4,5-dihydro-5-oxo-1,2-dithiolo-[4,3,b]-pyrrole-6-yl)-N-methylformamide, isolated from a Streptomyces sp. bacterium strain recovered from the ascidian Eudistoma vannamei. The complete structure of PFD was determined by a detailed NMR analysis, including 1H-13C and 1H-15N-HBMC data. In addition, conformational and DFT computational studies also were performed. A group of fishes (n = 6) was treated orally with PFD (0.1, 0.5 and 1.0 mg/mL; 20 μL) and subjected to locomotor activity and light/dark tests, as well as, acute toxicity 96 h. The involvement of the GABAergic and serotonergic (5-HT) systems was investigated using flumazenil (a silent modulator of GABA receptor) and 5-HT1, 5-HT2A/2C and 5-HTR3A/3B receptors antagonists, known as pizotifen, granisetron and cyproheptadine, respectively. PFD was nontoxic, reduced locomotor activity and promoted the anxiolytic effect in zebrafish. Flumazenil did not inhibit the anxiolytic effect of the PFD via the GABAergic system. This effect was reduced by a pretreatment with pizotifen and granisetron, and was not reversed after treatment with cyproheptadine. Molecular docking and dynamics studies confirmed the interaction of PFD with the 5-HT receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Hélcio S Dos Santos
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, Brazil
| | - Aluísio Marques da Fonseca
- Academic Master in Sociobiodiversity and Sustainable Technologies - MASTS, Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Acarape, CE, Brazil
| | - Carlos Emídio S Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Department of Physics, Regional University of Cariri, Crato, CE, Brazil
| | - Marcia M Marinho
- Laboratory of Chemistry of Natural Products, Synthesis and Biocatalysis of Organic Compounds, Vale do Acaraú University, Sobral, CE, Brazil
| | | | - Alexandre Magno R Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Course of Physics, State University of Ceará, Fortaleza, CE, Brazil
| | - Edilberto R Silveira
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Otília Deusdênia L Pessoa
- Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
13
|
Telegina TA, Vechtomova YL, Aybush AV, Buglak AA, Kritsky MS. Isomerization of carotenoids in photosynthesis and metabolic adaptation. Biophys Rev 2023; 15:887-906. [PMID: 37974987 PMCID: PMC10643480 DOI: 10.1007/s12551-023-01156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
In nature, carotenoids are present as trans- and cis-isomers. Various physical and chemical factors like light, heat, acids, catalytic agents, and photosensitizers can contribute to the isomerization of carotenoids. Living organisms in the process of evolution have developed different mechanisms of adaptation to light stress, which can also involve isomeric forms of carotenoids. Particularly, light stress conditions can enhance isomerization processes. The purpose of this work is to review the recent studies on cis/trans isomerization of carotenoids as well as the role of carotenoid isomers for the light capture, energy transfer, photoprotection in light-harvesting complexes, and reaction centers of the photosynthetic apparatus of plants and other photosynthetic organisms. The review also presents recent studies of carotenoid isomers for the biomedical aspects, showing cis- and trans-isomers differ in bioavailability, antioxidant activity and biological activity, which can be used for therapeutic and prophylactic purposes.
Collapse
Affiliation(s)
- T. A. Telegina
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - Yuliya L. Vechtomova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| | - A. V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, Building 1, 119991 Moscow, Russia
| | - A. A. Buglak
- Saint Petersburg State University, 7-9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - M. S. Kritsky
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 2, 119071 Moscow, Russia
| |
Collapse
|
14
|
Cheng Y, Xiang N, Chen H, Zhao Y, Wang L, Cheng X, Guo X. The modulation of light quality on carotenoid and tocochromanol biosynthesis in mung bean ( Vigna radiata) sprouts. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100170. [PMID: 36950347 PMCID: PMC10025981 DOI: 10.1016/j.fochms.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/24/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
This study aimed to identify the regulatory mechanisms of white, blue, red lights on carotenoid and tocochromanol biosynthesis in mung bean sprouts. Results showed that three lights stimulated the increase of the predominated lutein (3.2-8.1 folds) and violaxanthin (2.1-6.1 folds) in sprouts as compared with dark control, as well as β-carotene (20-36 folds), with the best yield observed under white light. Light signals also promoted α- and γ-tocopherol accumulation (up to 1.8 folds) as compared with dark control. The CRTISO, LUT5 and DXS (1.24-6.34 folds) exhibited high expression levels under light quality conditions, resulting in an overaccumulation of carotenoids. The MPBQ-MT, TC and TMT were decisive genes in tocochromanol biosynthesis, and were expressed up to 4.19 folds as compared with control. Overall, the results could provide novel insights into light-mediated regulation and fortification of carotenoids and tocopherols, as well as guide future agricultural cultivation of mung bean sprouts.
Collapse
Key Words
- BL, blue light
- Biofortification
- Biosynthesis
- CK, dark control
- Carotenoids
- HPLC, high performance liquid chromatography
- LEDs, light-emitting diodes
- LHCII, light-harvesting complex of PSII
- LQ, light quality
- Light quality
- MEP, methylerythritol phosphate
- Mung bean
- NASH, nonalcoholic steatohepatitis
- PS, photosynthesis
- PSII, photosystem II
- PSs, photosystems
- RL, red light
- Tocopherols
- VAD, vitamin A deficiency
- WL, white light
Collapse
Affiliation(s)
- Yaoyao Cheng
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Nan Xiang
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Honglin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yihan Zhao
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuzhen Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding authors.
| | - Xinbo Guo
- School of Food Science and Engineering, Ministry of Education Engineering Research Centre of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Corresponding authors.
| |
Collapse
|
15
|
Elias E, Liguori N, Croce R. At the origin of the selectivity of the chlorophyll-binding sites in light harvesting complex II (LHCII). Int J Biol Macromol 2023:125069. [PMID: 37245759 DOI: 10.1016/j.ijbiomac.2023.125069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
The photosynthetic light-harvesting complexes (LHCs) are responsible for light absorption due to their pigment-binding properties. These pigments are primarily Chlorophyll (Chl) molecules of type a and b, which ensure an excellent coverage of the visible light spectrum. To date, it is unclear which factors drive the selective binding of different Chl types in the LHC binding pockets. To gain insights into this, we employed molecular dynamics simulations on LHCII binding different Chl types. From the resulting trajectories, we have calculated the binding affinities per each Chl-binding pocket using the Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) model. To further examine the importance of the nature of the axial ligand in tuning the Chl selectivity of the binding sites, we used Density Functional Theory (DFT) calculations. The results indicate that some binding pockets have a clear Chl selectivity, and the factors governing these selectivities are identified. Other binding pockets are promiscuous, which is consistent with previous in vitro reconstitution studies. DFT calculations show that the nature of the axial ligand is not a major factor in determining the Chl binding pocket selectivity, which is instead probably controlled by the folding process.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Nicoletta Liguori
- Department of Physics and Astronomy, and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Marques da Fonseca A, Freire da Silva A, Barbosa da Silva FL, Caluaco BJ, Gaieta EM, Nunes da Rocha M, Colares RP, Sobczak JF, Marinho GS, Dos Santos HS, Marinho ES. Isolation, characterization and in silico study of propenamide alkaloids from Hymenoepmecis bicolor poison against active μ-opioid receptor. J Biomol Struct Dyn 2023; 41:14621-14637. [PMID: 36815273 DOI: 10.1080/07391102.2023.2183043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Some insects produce venoms to defend against predators and directly interact with opioid receptors. In the present study, it was identified two alkaloids in the wasp venom species Hymenoepimecis bicolor. It was demonstrated that these could act as potential inhibitors of opioid receptors through their robust affinity to the receptors. The interaction profile was given to opioid receptors (μOR), with 60% of targets similar to alkaloid 1, with 0.25 probability, and 46.7% of targets similar to alkaloid 2, with a probability 0.17 of affinity as a target, which is considered signaling macromolecules and can mediate the most potent analgesic and addictive properties of opiate alkaloids. Notably, both alkaloids showed -7.6 kcal/mol affinity to the morphine agonies through six residues, Gly124, Asp147, Trp293, Ile296, Ile322, and Tyr326. These observations suggest further research on opioid receptors using in vitro studies of possible therapeutic applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aluísio Marques da Fonseca
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Ananias Freire da Silva
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção, CE, Brazil
| | - Francisco Lennon Barbosa da Silva
- Institute of Engineering and Sustainable Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção, CE, Brazil
| | - Bernardino Joaquim Caluaco
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Eduardo Menezes Gaieta
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Matheus Nunes da Rocha
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Regilany Paulo Colares
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Jober Fernando Sobczak
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE, Brazil
| | - Gabrielle Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, CE, Brazil
| |
Collapse
|
17
|
Elias E, Liguori N, Croce R. The origin of pigment-binding differences in CP29 and LHCII: the role of protein structure and dynamics. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00368-7. [PMID: 36740636 DOI: 10.1007/s43630-023-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
The first step of photosynthesis in plants is performed by the light-harvesting complexes (LHC), a large family of pigment-binding proteins embedded in the photosynthetic membranes. These complexes are conserved across species, suggesting that each has a distinct role. However, they display a high degree of sequence homology and their static structures are almost identical. What are then the structural features that determine their different properties? In this work, we compared the two best-characterized LHCs of plants: LHCII and CP29. Using molecular dynamics simulations, we could rationalize the difference between them in terms of pigment-binding properties. The data also show that while the loops between the helices are very flexible, the structure of the transmembrane regions remains very similar in the crystal and the membranes. However, the small structural differences significantly affect the excitonic coupling between some pigment pairs. Finally, we analyzed in detail the structure of the long N-terminus of CP29, showing that it is structurally stable and it remains on top of the membrane even in the absence of other proteins. Although the structural changes upon phosphorylation are minor, they can explain the differences in the absorption properties of the pigments observed experimentally.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nicoletta Liguori
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Stra A, Almarwaey LO, Alagoz Y, Moreno JC, Al-Babili S. Carotenoid metabolism: New insights and synthetic approaches. FRONTIERS IN PLANT SCIENCE 2023; 13:1072061. [PMID: 36743580 PMCID: PMC9891708 DOI: 10.3389/fpls.2022.1072061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Carotenoids are well-known isoprenoid pigments naturally produced by plants, algae, photosynthetic bacteria as well as by several heterotrophic microorganisms. In plants, they are synthesized in plastids where they play essential roles in light-harvesting and in protecting the photosynthetic apparatus from reactive oxygen species (ROS). Carotenoids are also precursors of bioactive metabolites called apocarotenoids, including vitamin A and the phytohormones abscisic acid (ABA) and strigolactones (SLs). Genetic engineering of carotenogenesis made possible the enhancement of the nutritional value of many crops. New metabolic engineering approaches have recently been developed to modulate carotenoid content, including the employment of CRISPR technologies for single-base editing and the integration of exogenous genes into specific "safe harbors" in the genome. In addition, recent studies revealed the option of synthetic conversion of leaf chloroplasts into chromoplasts, thus increasing carotenoid storage capacity and boosting the nutritional value of green plant tissues. Moreover, transient gene expression through viral vectors allowed the accumulation of carotenoids outside the plastid. Furthermore, the utilization of engineered microorganisms allowed efficient mass production of carotenoids, making it convenient for industrial practices. Interestingly, manipulation of carotenoid biosynthesis can also influence plant architecture, and positively impact growth and yield, making it an important target for crop improvements beyond biofortification. Here, we briefly describe carotenoid biosynthesis and highlight the latest advances and discoveries related to synthetic carotenoid metabolism in plants and microorganisms.
Collapse
Affiliation(s)
- Alice Stra
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Lamyaa O. Almarwaey
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yagiz Alagoz
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan C. Moreno
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Al-Babili
- The Bioactives Laboratory, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
19
|
da Fonseca AM, Soares NB, Colares RP, Macedo de Oliveira M, Santos Oliveira L, Marinho GS, Raya Paula de Lima M, da Rocha MN, Dos Santos HS, Marinho ES. Naphthoquinones biflorin and bis-biflorin ( Capraria biflora) as possible inhibitors of the fungus Candida auris polymerase: molecular docking, molecular dynamics, MM/GBSA calculations and in silico drug-likeness study. J Biomol Struct Dyn 2023; 41:11564-11577. [PMID: 36597918 DOI: 10.1080/07391102.2022.2163702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
A new worldwide concern has emerged with the recent emergence of infections caused by Candida auris. This reflects its comparative ease of transmission, substantial mortality, and the increasing level of resistance seen in the three major classes of antifungal drugs. Efforts to create a better design for structure-based drugs that described numerous modifications and the search for secondary metabolic structures derived from plant species are likely to reduce the virulence of several fungal pathogens. In this context, the present work aimed to evaluate in silico two naphthoquinones isolated from the roots of Capraria biflora, biflorin, and its dimmer, bis-biflorin, as potential inhibitors of Candida auris polymerase. Based on the simulation performed with the two naphthoquinones, biflorin and bis-biflorin, it can be stated that bis-biflorin showed the best interactions with Candida auris polymerase. Still, biflorin also demonstrated favorable coupling energy. Predictive pharmacokinetic assays suggest that biflorin has high oral bioavailability and more excellent metabolic stability compared to the bis-biflorin analogue. constituting a promising pharmacological tool.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aluísio Marques da Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis - MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Neidelenio Baltazar Soares
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | - Regilany Paulo Colares
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, CE, Brazil
| | | | | | - Gabrielle Silva Marinho
- Grupo de Química Teórica e Eletroquímica - GQTE, Universidade Estadual de Ceará, Limoiro do Norte, CE, Brazil
| | - Mira Raya Paula de Lima
- Instituto Federal de Educação Ciência e Tecnologia do Ceará - Campus Juazeiro do Norte, Juazeiro do Norte, CE, Brazil
| | - Matheus Nunes da Rocha
- Grupo de Química Teórica e Eletroquímica - GQTE, Universidade Estadual de Ceará, Limoiro do Norte, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Grupo de Química Teórica e Eletroquímica - GQTE, Universidade Estadual de Ceará, Limoiro do Norte, CE, Brazil
| |
Collapse
|
20
|
Li DH, Wang W, Zhou C, Zhang Y, Zhao S, Zhou YM, Gao RY, Yao HD, Fu LM, Wang P, Shen JR, Kuang T, Zhang JP. Photoinduced chlorophyll charge transfer state identified in the light-harvesting complex II from a marine green alga Bryopsis corticulans. iScience 2022; 26:105761. [PMID: 36594012 PMCID: PMC9804108 DOI: 10.1016/j.isci.2022.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2022] [Revised: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
The light-harvesting complex II of Bryopsis corticulans (B-LHCII), a green alga, differs from that of spinach (S-LHCII) in chlorophyll (Chl) and carotenoid (Car) compositions. We investigated ultrafast excitation dynamics of B-LHCII with visible-to-near infrared time-resolved absorption spectroscopy. Absolute fluorescence quantum yield (Φ FL) of LHCII and spectroelectrochemical (SEC) spectra of Chl a and b were measured to assist the spectral analysis. Red-light excitation at Chl Qy-band, but not Car-band, induced transient features resembling the characteristic SEC spectra of Chl a ⋅+ and Chl b ⋅-, indicating ultrafast photogeneration of Chl-Chl charge transfer (CT) species; Φ FL and 3Car∗ declined whereas CT species increased upon prolonging excitation wavelength, showing positive correlation of 1Chl∗ deactivation with Chl-Chl CT formation. Moreover, ultrafast Chl b-to-Chl a and Car-to-Chl singlet excitation transfer were illustrated. The red-light induction of Chl-Chl CT species, as also observed for S-LHCII, is considered a general occurrence for LHCIIs in light-harvesting form.
Collapse
Affiliation(s)
- Dan-Hong Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China,School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Wenda Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cuicui Zhou
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Songhao Zhao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi-Ming Zhou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Hai-Dan Yao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Li-Min Fu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China,Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China,Corresponding author
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China,Corresponding author
| |
Collapse
|
21
|
Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet-Triplet Energy Transfer. Int J Mol Sci 2022; 23:ijms23094812. [PMID: 35563202 PMCID: PMC9105099 DOI: 10.3390/ijms23094812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Carotenoids represent the first line of defence of photosystems against singlet oxygen (1O2) toxicity, because of their capacity to quench the chlorophyll triplet state (3Chl) through a physical mechanism based on the transfer of triplet excitation (triplet-triplet energy transfer, TTET). In previous works, we showed that the antenna LHCII is characterised by a robust photoprotective mechanism, able to adapt to the removal of individual chlorophylls while maintaining a remarkable capacity for 3Chl quenching. In this work, we investigated the effects on this quenching induced in LHCII by the replacement of the lutein bound at the L1 site with violaxanthin and zeaxanthin. We studied LHCII isolated from the Arabidopsis thaliana mutants lut2-in which lutein is replaced by violaxanthin-and lut2 npq2, in which all xanthophylls are replaced constitutively by zeaxanthin. We characterised the photophysics of these systems via optically detected magnetic resonance (ODMR) and time-resolved electron paramagnetic resonance (TR-EPR). We concluded that, in LHCII, lutein-binding sites have conserved characteristics, and ensure efficient TTET regardless of the identity of the carotenoid accommodated.
Collapse
|
22
|
Sutherland GA, Qian P, Hunter CN, Swainsbury DJ, Hitchcock A. Engineering purple bacterial carotenoid biosynthesis to study the roles of carotenoids in light-harvesting complexes. Methods Enzymol 2022; 674:137-184. [DOI: 10.1016/bs.mie.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|