1
|
Wanderley TS, Buscemi R, Conboy Ó, Knight B, Crisenza GEM. General Alkene 1,2- syn-Cyano-Hydroxylation Procedure Via Electrochemical Activation of Isoxazoline Cycloadducts. J Am Chem Soc 2024; 146:32848-32858. [PMID: 39537202 PMCID: PMC11613428 DOI: 10.1021/jacs.4c13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Stereoselective alkene 1,2-difunctionalization is a privileged strategy to access three-dimensional C(sp3)-rich chiral molecules from readily available "flat" carbon feedstocks. State-of-the-art approaches exploit chiral transition metal-catalysts to enable high levels of regio- and stereocontrol. However, this is often achieved at the expense of a limited alkene scope and reduced generality. 1,3-Dipolar cycloadditions are routinely used to form heterocycles from alkenes with high levels of regioselectivity and stereospecificity. Nevertheless, methods for the ring-opening of cycloadducts to reveal synthetically useful functionalities require the use of hazardous reagents or forcing reaction conditions; thus limiting their synthetic applications. Herein, we describe the implementation of a practical, general and selective electrosynthetic strategy for olefin 1,2-syn-difunctionalization, which hinges on the design of novel reagents-consisting of a nitrile oxide 1,3-dipole precursor, equipped with a sulfonyl-handle. These can selectively difunctionalize alkenes via "click" 1,3-dipolar cycloadditions, and then facilitate the telescoped electrochemical single electron transfer activation of the ensuing isoxazoline intermediate. Cathodic reduction of the cycloadduct triggers a radical fragmentation pathway delivering sought-after stereodefined 1,2-syn-hydroxy nitrile derivatives. Our telescoped electrochemical procedure tolerates a wide range of functionalities, and─crucially─enables the difunctionalization of both electron-rich, electron-poor and unactivated olefins, with diverse degree of substitution; thus providing a robust, general and selective metal-free alternative to current alkene difunctionalization strategies. Capitalizing on these features, we employed our electrosynthetic method to enable the late-stage syn-hydroxy-cyanation of natural products and bioactive compounds, and streamline the de novo synthesis of pharmaceutical agents.
Collapse
Affiliation(s)
- Taciano
A. S. Wanderley
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Roberto Buscemi
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Órla Conboy
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin Knight
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Giacomo E. M. Crisenza
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Jiang Q, Dong J, Wang C, Li F, Zhou X, Wang Y, Liao H, Dang J, Li G, Xue D. Light-Induced, Cs 2CO 3 Promoted C-S Cleavage of Heteroaryl Sulfones for Benzyl Heteroarylation of [1.1.1]Propellane. Org Lett 2024; 26:6230-6235. [PMID: 39011564 DOI: 10.1021/acs.orglett.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In this study, we developed a light-induced difunctionalization of [1.1.1]propellane with heteroaryl sulfones acting as difunctional reagents, allowing the introduction of alkyl and heteroaryl units across bicyclo[1.1.1]pentane frameworks. It features a broad substrate scope and can be used to functionalize structurally complex natural products. Mechanistic investigations indicate the Cs2CO3 promoted homolytic cleavage of heteroaryl sulfone C-S bonds by light. Moreover, the benzothiazolyl moiety in the products can serve as a formyl precursor, indicating the robust transformability of the products, owing to the ability of aldehydes to undergo a wide variety of organic transformations.
Collapse
Affiliation(s)
- Qin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Chenya Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Fei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xuechen Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yuying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Huijuan Liao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jiayi Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
3
|
Zachmann AKZ, Drappeau JA, Liu S, Alexanian EJ. C(sp 3)-H (N-Phenyltetrazole)thiolation as an Enabling Tool for Molecular Diversification. Angew Chem Int Ed Engl 2024; 63:e202404879. [PMID: 38657161 DOI: 10.1002/anie.202404879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Methods enabling the broad diversification of C(sp3)-H bonds from a common intermediate are especially valuable in chemical synthesis. Herein, we report a site-selective (N-phenyltetrazole)thiolation of aliphatic and (hetero)benzylic C(sp3)-H bonds using a commercially available disulfide to access N-phenyltetrazole thioethers. The thioether products are readily elaborated in diverse fragment couplings for C-C, C-O, or C-N construction. The C-H functionalization proceeds via a radical-chain pathway involving hydrogen atom transfer by the electron-poor N-phenyltetrazolethiyl radical. Hexafluoroisopropanol was found to be essential to reactions involving aliphatic C(sp3)-H thiolation, with computational analysis consistent with dual hydrogen bonding of the N-phenyltetrazolethiyl radical imparting increased radical electrophilicity to facilitate the hydrogen atom transfer. Substrate is limiting reagent in all cases, and the reaction displays an exceptional functional group tolerance well suited to applications in late-stage diversification.
Collapse
Affiliation(s)
- Ashley K Z Zachmann
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Justine A Drappeau
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shubin Liu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik J Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Ohtsuka M, Ghosh K, Yim JCH, Sotome H, Okamoto T, Suda K, Kobori Y, Yokogawa D, Miyasaka H, Crudden CM, Nambo M. Visible-light-induced direct C-H alkylation of polycyclic aromatic hydrocarbons with alkylsulfones. Chem Sci 2024; 15:10592-10599. [PMID: 38994431 PMCID: PMC11234832 DOI: 10.1039/d4sc02577f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are fragments of graphene that have attracted considerable attention as a new class of carbon-based materials. The functionalization of edge positions in PAHs is important to enable the modulation of physical and chemical properties essential for various applications. However, straightforward methods that combine functional group tolerance and regioselectivity remain sought after. Here we report a photochemical approach for the direct alkylation of carbon-hydrogen bonds in PAHs that takes place in a regiospecific manner, an outcome that has never been achieved in related thermal reactions. A reaction mechanism involving a single electron transfer process from photo-excited PAHs to sulfones, and a rationale for the origin of regioselectivity are proposed on the basis of spectroscopic analyses and theoretical calculations.
Collapse
Affiliation(s)
- Motoo Ohtsuka
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Koushik Ghosh
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Jacky C-H Yim
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Tsubasa Okamoto
- Molecular Photoscience Research Center, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemistry, Graduate School of Science, Kobe University 1-1, Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Kayo Suda
- Graduate School of Arts and Sciences, The University of Tokyo Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemistry, Graduate School of Science, Kobe University 1-1, Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Sciences, The University of Tokyo Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
- Department of Chemistry, Queen's University Chernoff Hall Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, Queen's University Kingston Ontario K7L 3N6 Canada
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
- Department of Chemistry, Graduate School of Science, Nagoya University Furo, Chikusa Nagoya Aichi 464-8601 Japan
| |
Collapse
|
5
|
Tsuchiya N, Oku A, Nishikata T. Catalytic tert-alkylation of enamides via C-C bond cleavage under photoredox conditions. Chem Commun (Camb) 2024; 60:6623-6626. [PMID: 38847605 DOI: 10.1039/d4cc01643b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Efficient C-C bond cleavage is recognized as a persistent challenge in the field of synthetic methodology. In this study, we found that tertiary alkyl radicals are smoothly formed from tertiary alkylated dienones (BHT adducts) via SET, using PDI as a photocatalyst. Resulting tert-alkyl radicals could be applied to the tert-alkylation of enamides. The driving force of this C-C bond cleavage reaction is the mesolytic cleavage of the BHT adducts. The mechanistic study revealed that PDI anion radical is the key active species during the catalytic cycle.
Collapse
Affiliation(s)
- Naoki Tsuchiya
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Ayane Oku
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| | - Takashi Nishikata
- Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan.
| |
Collapse
|
6
|
Wang YY, Pang WJ, Liu T, Sun J, Zhou MD. Zn-Mediated Fragmentation of N-Alkoxyphthalimides Enabling the Synthesis of gem-Difluoroalkenes. Org Lett 2024. [PMID: 38804574 DOI: 10.1021/acs.orglett.4c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Zn-mediated generation of alkoxyl radicals from N-alkoxyphthalimides emerged as an efficient approach for forming diverse and valuable alkyl radicals through β-scission or a hydrogen atom transfer process. The alkyl radical species can be further trapped by α-trifluoromethyl alkenes to construct a series of gem-difluoroalkenes.
Collapse
Affiliation(s)
- Yi-Yue Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wei-Jun Pang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Tie Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Jing Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Ming-Dong Zhou
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
7
|
Phelps J, Kumar R, Robinson JD, Chu JCK, Flodén NJ, Beaton S, Gaunt MJ. Multicomponent Synthesis of α-Branched Amines via a Zinc-Mediated Carbonyl Alkylative Amination Reaction. J Am Chem Soc 2024; 146:9045-9062. [PMID: 38488310 PMCID: PMC10996026 DOI: 10.1021/jacs.3c14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Methods for the synthesis of α-branched alkylamines are important due to their ubiquity in biologically active molecules. Despite the development of many methods for amine preparation, C(sp3)-rich nitrogen-containing compounds continue to pose challenges for synthesis. While carbonyl reductive amination (CRA) between ketones and alkylamines is the cornerstone method for α-branched alkylamine synthesis, it is sometimes limited by the sterically demanding condensation step between dialkyl ketones and amines and the more restricted availability of ketones compared to aldehydes. We recently reported a "higher-order" variant of this transformation, carbonyl alkylative amination (CAA), which utilized a halogen atom transfer (XAT)-mediated radical mechanism, enabling the streamlined synthesis of complex α-branched alkylamines. Despite the efficacy of this visible-light-driven approach, it displayed scalability issues, and competitive reductive amination was a problem for certain substrate classes, limiting applicability. Here, we report a change in the reaction regime that expands the CAA platform through the realization of an extremely broad zinc-mediated CAA reaction. This new strategy enabled elimination of competitive CRA, simplified purification, and improved reaction scope. Furthermore, this new reaction harnessed carboxylic acid derivatives as alkyl donors and facilitated the synthesis of α-trialkyl tertiary amines, which cannot be accessed via CRA. This Zn-mediated CAA reaction can be carried out at a variety of scales, from a 10 μmol setup in microtiter plates enabling high-throughput experimentation, to the gram-scale synthesis of medicinally-relevant compounds. We believe that this transformation enables robust, efficient, and economical access to α-branched alkylamines and provides a viable alternative to the current benchmark methods.
Collapse
Affiliation(s)
| | | | | | | | - Nils J. Flodén
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sarah Beaton
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Matthew J. Gaunt
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Zhu Y, Qiu YH, Dai XK, Luo W, Peng X, Chen Z, Yu D. Difluoromethylated Difunctionalization of Alkenes under Visible Light. J Org Chem 2024; 89:2525-2537. [PMID: 38300156 DOI: 10.1021/acs.joc.3c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Difluoromethylated compounds usually act as bioisosteres for alcohol functional groups and show unique physicochemical and biological properties. The cyano-difluoromethylation of alkenes using 5-((difluoromethyl)sulfonyl)-1-phenyl-1H-tetrazole as a CF2H radical difluoromethyl precursor was developed to afford nitriles including a CF2H group. A low-cost, stable, easily handled 5-((difluoromethyl)sulfonyl)-1-methyl-1H-tetrazole (DFSMT) was synthesized and applied as the radical CF2H reagent. Using DFSMT as the radical CF2H precursor, the oxyl-difluoromethylation of alkenes was developed to obtain difluoromethylated ether products. All of the reactions showed good functional group tolerability. Initial mechanistic experiments indicated that the CF2H radical was involved as the key active intermediate.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yan-Hua Qiu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiao-Kang Dai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Sciences of Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Daohong Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
9
|
Patel S, Chakraborty A, Chatterjee I. C(sp 3)-C(sp 3) Radical-Cross-Coupling Reaction via Photoexcitation. Org Lett 2023; 25:8246-8251. [PMID: 37947520 DOI: 10.1021/acs.orglett.3c03276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The photoexcitation of 4-alkyl-1,4-dihydropyridines (alkyl-DHPs) in the presence of a base triggers the single-electron-transfer-mediated desulfonative radical-cross-coupling (RCC) reaction without the need for any metal or photocatalyst. 4-Alkyl-substituted 1,4-DHPs as the electron donor (reductant) and alkyl sulfones as the electron acceptor (oxidant) are chosen strategically as the two best-matched modular radical precursors for the construction of C(sp3)-C(sp3) bonds. Ultraviolet light-emitting diodes (365 nm) have proven to be adequate for inducing single-electron transfer between two radical precursors in the excited state. Following this designed strategy, a diverse collection of primary, secondary, and tertiary persistent alkyl radicals from both radical precursors have been used to forge C(sp3)-C(sp3) bonds. This blueprint features good functional group compatibility, a broad scope, and detailed mechanistic investigation.
Collapse
Affiliation(s)
- Sandeep Patel
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Arijit Chakraborty
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| |
Collapse
|
10
|
Kuzmin J, Röckl J, Schwarz N, Djossou J, Ahumada G, Ahlquist M, Lundberg H. Electroreductive Desulfurative Transformations with Thioethers as Alkyl Radical Precursors. Angew Chem Int Ed Engl 2023; 62:e202304272. [PMID: 37342889 DOI: 10.1002/anie.202304272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
Thioethers are highly prevalent functional groups in organic compounds of natural and synthetic origin but remain remarkably underexplored as starting materials in desulfurative transformations. As such, new synthetic methods are highly desirable to unlock the potential of the compound class. In this vein, electrochemistry is an ideal tool to enable new reactivity and selectivity under mild conditions. Herein, we demonstrate the efficient use of aryl alkyl thioethers as alkyl radical precursors in electroreductive transformations, along with mechanistic details. The transformations proceed with complete selectivity for C(sp3 )-S bond cleavage, orthogonal to that of established transition metal-catalyzed two-electron routes. We showcase a hydrodesulfurization protocol with broad functional group tolerance, the first example of desulfurative C(sp3 )-C(sp3 ) bond formation in Giese-type cross-coupling and the first protocol for electrocarboxylation of synthetic relevance with thioethers as starting materials. Finally, the compound class is shown to outcompete their well-established sulfone analogues as alkyl radical precursors, demonstrating their synthetic potential for future desulfurative transformations in a one-electron manifold.
Collapse
Affiliation(s)
- Julius Kuzmin
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Johannes Röckl
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Nils Schwarz
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Jonas Djossou
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Guillermo Ahumada
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mårten Ahlquist
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| |
Collapse
|
11
|
Yang ZX, Lai L, Chen J, Yan H, Ye KY, Chen FE. Stereoselective electrochemical carboxylation of α,β-unsaturated sulfones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Luguera Ruiz A, La Mantia M, Merli D, Protti S, Fagnoni M. Alkyl Radical Generation via C–C Bond Cleavage in 2-Substituted Oxazolidines. ACS Catal 2022; 12:12469-12476. [PMID: 36249874 PMCID: PMC9552967 DOI: 10.1021/acscatal.2c03768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Indexed: 11/30/2022]
Abstract
![]()
There is an urgent need to develop uncharged radical
precursors
to be activated under mild photocatalyzed conditions. 2-Substituted-1,3-oxazolidines
(Eox < 1.3 V vs SCE, smoothly prepared
from the corresponding aldehydes) have been herein employed for the
successful release of tertiary, α-oxy, and α-amido radicals
under photo-organo redox catalysis. The reaction relies on the unprecedented
C–C cleavage occurring from the radical cation of these heterocyclic
derivatives. Such a protocol is applied to the visible-light-driven
conjugate radical addition onto Michael acceptors and vinyl (hetero)arenes
under mild metal-free conditions.
Collapse
Affiliation(s)
- Adrián Luguera Ruiz
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marta La Mantia
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniele Merli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
13
|
Nambo M, Ghosh K, Yim JCH, Tahara Y, Inai N, Yanai T, Crudden CM. Desulfonylative Coupling of Alkylsulfones with gem-Difluoroalkenes by Visible-Light Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Koushik Ghosh
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Jacky C.-H. Yim
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuyo Tahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Naoto Inai
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Cathleen M. Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
14
|
Tamba S, Nitani M, Seo T, Nitta H, Tanaka H, Hagiya K, Aso Y, Ie Y. Tetrazolo[1,5- a]pyridine-Containing π-Conjugated Systems: Synthesis, Properties, and Semiconducting Characteristics. Org Lett 2022; 24:3792-3796. [DOI: 10.1021/acs.orglett.2c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shunsuke Tamba
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masashi Nitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takuji Seo
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hajime Nitta
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hikaru Tanaka
- Toyobo Co., Ltd., 2-1-1 Katata, Otsu, Shiga 520-0292, Japan
| | | | - Yoshio Aso
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yutaka Ie
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Nambo M, Crudden CM. Sequential Transformations of Organosulfones on the Basis of Properties of Sulfonyl Groups. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules, Nagoya University
| | | |
Collapse
|
16
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient
ortho
‐Selective Trifluoromethane‐sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Songlin Bai
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| | - Xiangbing Qi
- National Institute of Biological Sciences Beijing 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research Tsinghua University Beijing 100084 China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering Shandong University 27 South Shanda Road Ji'nan 250100, Shandong China
| |
Collapse
|
17
|
Patel S, Paul B, Paul H, Shankhdhar R, Chatterjee I. Redox-active alkylsulfones as precursors for alkyl radicals under photoredox catalysis. Chem Commun (Camb) 2022; 58:4857-4860. [DOI: 10.1039/d2cc00163b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light photoredox catalytic method for the generation of alkyl radicals using redox-active alkylsulfones to form a new C–C bond is reported.
Collapse
Affiliation(s)
- Sandeep Patel
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Biprajit Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Hrishikesh Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Rajat Shankhdhar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| |
Collapse
|
18
|
Liu Y, Bai S, Du Y, Qi X, Gao H. Expeditious and Efficient ortho-Selective Trifluoromethane-sulfonylation of Arylhydroxylamines. Angew Chem Int Ed Engl 2021; 61:e202115611. [PMID: 34904339 DOI: 10.1002/anie.202115611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 12/14/2022]
Abstract
A metal- and oxidant-free, practical and efficient method for the synthesis of highly versatile and synthetically useful ortho-trifluoromethanesulfonylated anilines from arylhydroxylamines and trifluoromethanesulfinic chloride was developed. This rapid transformation proceeded smoothly with good yields and excellent ortho-selectivity in the absence of any metals or ligands. Mechanistically, the reaction comprised a noncanonical O-trifluoromethanesulfinylation of the arylhydroxylamine, and the subsequent [2,3]-sigmatropic rearrangement to afford ortho-trifluoromethanesulfonylated aniline derivatives. The practical application of this reaction was demonstrated by further conversion into a series of functional molecules under different reaction conditions.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Songlin Bai
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Yuanbo Du
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| |
Collapse
|
19
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
20
|
Sengoku T, Ogawa D, Iwama H, Inuzuka T, Yoda H. A heavy-metal-free desulfonylative Giese-type reaction of benzothiazole sulfones under visible-light conditions. Chem Commun (Camb) 2021; 57:9858-9861. [PMID: 34490858 DOI: 10.1039/d1cc03833h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A visible-light-induced desulfonylative Giese-type reaction has been developed. Essential to the success is the employment of Hantzsch ester to activate benzothiazole sulfones without any heavy-metal additives. Not only benzylic benzothiazole sulfones but also alkyl ones were viable substrates and reacted with electron-deficient alkenes and a propiol amide.
Collapse
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Daichi Ogawa
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Haruka Iwama
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hidemi Yoda
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| |
Collapse
|
21
|
Nguyen VT, Haug GC, Nguyen VD, Vuong NTH, Arman HD, Larionov OV. Photocatalytic decarboxylative amidosulfonation enables direct transformation of carboxylic acids to sulfonamides. Chem Sci 2021; 12:6429-6436. [PMID: 34084443 PMCID: PMC8115300 DOI: 10.1039/d1sc01389k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Sulfonamides feature prominently in organic synthesis, materials science and medicinal chemistry, where they play important roles as bioisosteric replacements of carboxylic acids and other carbonyls. Yet, a general synthetic platform for the direct conversion of carboxylic acids to a range of functionalized sulfonamides has remained elusive. Herein, we present a visible light-induced, dual catalytic platform that for the first time allows for a one-step access to sulfonamides and sulfonyl azides directly from carboxylic acids. The broad scope of the direct decarboxylative amidosulfonation (DDAS) platform is enabled by the efficient direct conversion of carboxylic acids to sulfinic acids that is catalyzed by acridine photocatalysts and interfaced with copper-catalyzed sulfur-nitrogen bond-forming cross-couplings with both electrophilic and nucleophilic reagents.
Collapse
Affiliation(s)
- Vu T Nguyen
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Graham C Haug
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Viet D Nguyen
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ngan T H Vuong
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|