1
|
Pan X, Zhao X, Lu Y, Xie P, Liu L, Chu X. Harnessing Nanomaterials for Enhanced DNA-Based Biosensing and Therapeutic Performance. Chembiochem 2024:e202400936. [PMID: 39655520 DOI: 10.1002/cbic.202400936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
The integration of nanomaterials with DNA-based systems has emerged as a transformative approach in biosensing and therapeutic applications. Unique features of DNA, like its programmability and specificity, complement the diverse functions of nanomaterials, leading to the creation of advanced systems for detecting biomarkers and delivering treatments. Here, we review the developments in DNA-nanomaterial conjugates, emphasizing their enhanced functionalities and potential across various biomedical applications. We first discuss the methodologies for synthesizing these conjugates, distinguishing between covalent and non-covalent interactions. We then categorize DNA-nanomaterials conjugates based on the properties of the DNA and nanomaterials involved, respectively. DNA probes are classified by their application into biosensing or therapeutic uses, and, several nanomaterials are highlighted by their recent progress in living biological. Finally, we discuss the current challenges and future prospects in this field, anticipating that significant progress in DNA-nanomaterial conjugates will greatly enhance precision medicine.
Collapse
Affiliation(s)
- Xumin Pan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiaoman Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Yanhong Lu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Ping Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lan Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
2
|
Mohammadi F, Zahraee H, Zibadi F, Khoshbin Z, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Progressive cancer targeting by programmable aptamer-tethered nanostructures. MedComm (Beijing) 2024; 5:e775. [PMID: 39434968 PMCID: PMC11491555 DOI: 10.1002/mco2.775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches. Radiotherapy, chemotherapy, immunotherapy, and surgery have been widely adopted as routine cancer treatment strategies to suppress disease progression and metastasis. These therapeutic approaches have lengthened the longevity of countless cancer patients. Nonetheless, some inherent limitations have restricted their application, including insignificant therapeutic efficacy, toxicity, negligible targeting, non-specific distribution, and multidrug resistance. The development of therapeutic oligomer nanoconstructs with the advantages of chemical solid-phase synthesis, programmable design, and precise adjustment is crucial for advancing smart targeted drug nanocarriers. This review focuses on the significance of the different aptamer-assembled nanoconstructs as multifunctional nucleic acid oligomeric nanoskeletons in efficient drug delivery. We discuss recent advancements in the design and utilization of aptamer-tethered nanostructures to enhance the efficacy of cancer treatment. Valuably, this comprehensive review highlights self-assembled aptamers as the exceptionally intelligent nano-biomaterials for targeted drug delivery based on their superior stability, high specificity, excellent recoverability, inherent biocompatibility, and versatile functions.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Hamed Zahraee
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Farkhonde Zibadi
- Department of Medical Biotechnology and NanotechnologyFaculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Mohammad Ramezani
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mona Alibolandi
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Khalil Abnous
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Medicinal ChemistrySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Department of Pharmaceutical BiotechnologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Malina J, Kostrhunova H, Brabec V. Ni(II) Cylinders Damage DNA in Cancer Cells and Preferentially Bind Y-Shaped DNA Three-Way Junctions Blocking DNA Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406814. [PMID: 39428899 DOI: 10.1002/smll.202406814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Indexed: 10/22/2024]
Abstract
DNA three-way junctions are critical in various biological processes and hold significant potential for disease treatment and therapeutic applications. In this study, it is demonstrated that triple-stranded dinuclear [Ni2L3]4+ cylinders (L = C25H20N4) exhibit a preferential binding affinity for Y-shaped DNA three-way junctions (3WJs), even in the presence of an excess of competing DNA structures, including G-quadruplexes. Notably, the investigated Ni(II) cylinders are capable of halting DNA synthesis catalyzed by DNA polymerase by stabilizing the 3WJ on the template strand. Using an extended 1D nanoarchitecture model, it is further established the high affinity and selectivity of the cylinders for DNA 3WJs and explored their potential application in stabilizing short-armed 3WJs for constructing DNA nanomaterials. The combined use of Ni(II) cylinders and DNA damage response inhibitors also revealed that the cylinders promote DNA damage, leading to the formation of double-strand breaks. This effect is likely associated with i) the binding of cylinders to 3WJs and ii) the cytotoxic activity of the cylinders in cancer cells.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Brno, CZ-61200, Czech Republic
- Palacky University, Department of Biophysics, Faculty of Science, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
4
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Guo Z, Deng Y, Yang B, Lu W, Tian Z. Learning from Classic: DNA-Based Conditional Equilibrium Constant To Regulate Affinity "On-the-Fly" for Bioassays. Anal Chem 2024. [PMID: 39276337 DOI: 10.1021/acs.analchem.4c03409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Artificial programming of affinity is beneficial to optimize responsiveness in biomolecules for various applications. In one classical theory, one comprehensive parameter, conditional equilibrium constant (K'EDTA), can accurately and quantitatively define the affinity of ethylene diamine tetraacetic acid (EDTA) for metal ions. Learning from the classic, we have proposed a novel DNA-based conditional equilibrium constant (K'DNA) to regulate DNA probes' affinity and response "on-the-fly", long after the probe design and synthesis. Artificial regulation of affinity over several magnitudes has been simply realized via short oligonucleotides with different lengths, concentrations, and combinations. The thermodynamic response can be quantitatively simulated by one DNA-based conditional equilibrium constant (K'DNA), acting as an analogue to the classical EDTA system. The proof of concept of affinity programming also allows improved discrimination of single-nucleotide variants as well as assaying ribonuclease and doxycycline in a homogeneous solution. Therefore, the theory of DNA-based conditional equilibrium constant (K'DNA) will enable to engineer versatile DNA switches with programmable affinity in assays and bionanotechnology.
Collapse
Affiliation(s)
- Zihua Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 410005, P. R. China
| | - Yinping Deng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 410005, P. R. China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 410005, P. R. China
| | - Weiyi Lu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 410005, P. R. China
| | - Zhen Tian
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 410005, P. R. China
| |
Collapse
|
6
|
Li XY, Zhou BX, Xiao YL, Liu X, Wang YQ, Li MM, Wang JP. Label-free and ultrasensitive detection of environmental lead ions based on spatially localized DNA nanomachines driven by hyperbranched hybridization chain reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135115. [PMID: 38976962 DOI: 10.1016/j.jhazmat.2024.135115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
A label-free fluorescent sensing strategy for the rapid and highly sensitive detection of Pb2+ was developed by integrating Pb2+ DNAzyme-specific cleavage activity and a tetrahedral DNA nanostructure (TDN)-enhanced hyperbranched hybridization chain reaction (hHCR). This strategy provides accelerated reaction rates because of the highly effective collision probability and enriched local concentrations from the spatial confinement of the TDN, thus showing a higher detection sensitivity and a more rapid detection process. Moreover, a hairpin probe based on a G-triplex instead of a G-quadruplex or chemical modification makes hybridization chain reaction more controlled and flexible, greatly improving signal amplification capacities and eliminating labeled DNA probes. The enhanced reaction rates and improved signal amplification efficiency endowed the biosensors with high sensitivity and a rapid response. The label-free detection of Pb2+ based on G-triplex combined with thioflavin T can be achieved with a detection limit as low as 1.8 pM in 25 min. The proposed Pb2+-sensing platform was also demonstrated to be applicable for Pb2+ detection in tap water, river water, shrimp, rice, and soil samples, thus showing great potential for food safety and environmental monitoring.
Collapse
Affiliation(s)
- Xiao-Yu Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Bo-Xi Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yu-Ling Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xin Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yong-Qian Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Ming-Min Li
- Life and Health Research Institute School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Jun-Ping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
7
|
Zhang T, Sun X, Chen X, Chen W, Tang H, Li CY. Intelligent near-infrared light-activatable DNA machine with DNA wire nano-scaffold-integrated fast domino-like driving amplification for high-performance imaging in live biological samples. Biosens Bioelectron 2024; 259:116412. [PMID: 38795498 DOI: 10.1016/j.bios.2024.116412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
While there is significant potential for DNA machine-built enzyme-free fluorescence biosensors in the imaging analysis of live biological samples, they persist certain shortcomings. These encompass a deficiency of signal enrichment within a singular interface, uncontrolled premature activation during bio-delivery, and a slow reaction rate due to free nucleic acid collisions. In this contribution, we are committed to resolving the above challenges. Firstly, a single-interface-integrated domino-like driving amplification is constructed. In this conception, a specific target acts as the domino promotor (namely the energy source), initiating a cascading chain reaction that grafts onto a singular interface. Next, an 808 nm near-infrared (NIR) light-excited up-converting luminescence-induced light-activatable biosensing technique is introduced. By locking the target-specific identification segment with a photo-cleavage connector, the up-converted ultraviolet emission can activate target binding in a completely controlled manner. Moreover, a fast reaction rate is achieved by confining nucleic acid collisions within the surface of a DNA wire nano-scaffold, leading to a substantial enhancement in local contact concentration (30.8-fold increase, alongside a 15 times elevation in rate). When a non-coding microRNA (miRNA-221) is positioned as the model low-abundance target for proof-of-concept validation, our intelligent DNA machine demonstrates ultra-high sensitivity (with a limit of detection down to 62.65 fM) and good specificity for this hepatic malignant tumor-associated biomarker in solution detection. Going further, it is worth highlighting that the biosensing system can be employed to carry out high-performance imaging analysis in live bio-samples (ranging from the cellular level to the nude mouse body), thereby propelling the field of DNA machines in disease diagnosis.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Xiaoxue Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Weilin Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Hongwu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Cheng-Yu Li
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
8
|
Chen C, Yu M, Li Q, Zhou Y, Zhang M, Cai S, Yu J, Huang Z, Liu J, Kuang Y, Tang X, Chen W. Programmable Tetrahedral DNA-RNA Nanocages Woven with Stimuli-Responsive siRNA for Enhancing Therapeutic Efficacy of Multidrug-Resistant Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404112. [PMID: 38923806 PMCID: PMC11348235 DOI: 10.1002/advs.202404112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Multidrug resistance (MDR) is a major obstacle limiting the effectiveness of chemotherapy against cancer. The combination strategy of chemotherapeutic agents and siRNA targeting drug efflux has emerged as an effective cancer treatment to overcome MDR. Herein, stimuli-responsive programmable tetrahedral DNA-RNA nanocages (TDRN) have been rationally designed and developed for dynamic co-delivery of the chemotherapeutic drug doxorubicin and P-glycoprotein (P-gp) siRNA. Specifically, the sense and antisense strand sequences of the P-gp siRNA, which are programmable bricks with terminal disulfide bond conjugation, are precisely embedded in one edge of the DNA tetrahedron. TDRN provides a stimuli-responsive release element for dynamic control of functional cargo P-gp siRNA that is significantly more stable than the "tail-like" TDN nanostructures. The stable and highly rigid 3D nanostructure of the siRNA-organized TDRN nanocages demonstrated a notable improvement in the stability of RNase A and mouse serum, as well as long-term storage stability for up to 4 weeks, as evidenced by this study. These biocompatible and multifunctional TDRN nanocarriers with gold nanocluster-assisted delivery (TDRN@Dox@AuNCp) are successfully used to achieve synergistic RNAi/Chemo-therapy in vitro and in vivo. This programmable TDRN drug delivery system, which integrates RNAi therapy and chemotherapy, offers a promising approach for treating multidrug-resistant tumors.
Collapse
MESH Headings
- RNA, Small Interfering/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- Animals
- Mice
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/genetics
- Drug Resistance, Multiple/drug effects
- DNA/genetics
- DNA/chemistry
- Humans
- Nanostructures/chemistry
- Cell Line, Tumor
- Disease Models, Animal
- Neoplasms/genetics
- Neoplasms/therapy
- Neoplasms/drug therapy
- Drug Delivery Systems/methods
- Mice, Nude
Collapse
Affiliation(s)
- Changmai Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Maocheng Yu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Qing Li
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Ying Zhou
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Mengting Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Shanyu Cai
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Jiaojiao Yu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Zhongnan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Jiaan Liu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Ye Kuang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of PharmacyFujian Medical UniversityFuzhou350122China
| |
Collapse
|
9
|
Yang H, Jin Y, Qian H, Wang Y, Bao T, Wu Z, Wen W, Zhang X, Wang S. Target-driven cascade amplified assembly of covalent organic frameworks on tetrahedral DNA nanostructure with multiplex recognition domains for ultrasensitive detection of microRNA. Anal Chim Acta 2024; 1311:342743. [PMID: 38816160 DOI: 10.1016/j.aca.2024.342743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND MicroRNA (miRNA) emerges as important cancer biomarker, accurate detection of miRNA plays an essential role in clinical sample analysis and disease diagnosis. However, it remains challenging to realize highly sensitive detection of low-abundance miRNA. Traditional detection methods including northern blot and real-time PCR have realized quantitative miRNA detection. However, these detection methods are involved in sophisticated operation and expensive instruments. Therefore, the development of novel sensing platform with high sensitivity and specificity for miRNA detection is urgently demanded for disease diagnosis. RESULTS In this work, a novel electrochemical biosensor was constructed for miRNA detection based on target-driven cascade amplified assembly of electroactive covalent organic frameworks (COFs) on tetrahedral DNA nanostructure with multiplex recognition domains (m-TDN). COFs were employed as nanocarriers of electroactive prussian blue (PB) molecules by the "freeze-drying-reduction" method without the use of DNA as gatekeeper, which was simple, mild and efficient. The target-triggered catalytic hairpin assembly (CHA) and glutathione reduction could convert low-abundance miRNA into a large amount of Mn2+. Without the addition of exogenous Mn2+, the dynamically-generated Mn2+-powered DNAzyme cleavage process induced abundant PB-COFs probe assembled on the four recognition domains of m-TDN, resulting in significantly signal output. Using miRNA-182-5p as the model target, the proposed electrochemical biosensor achieved ultrasensitive detection of miRNA-182-5p in the range of 10 fM-100 nM with a detection limit of 2.5 fM. SIGNIFICANCE AND NOVELTY Taking advantages of PB-COFs probe as the enhanced signal labels, the integration of CHA, Mn2+-powered DNAzyme and m-TDN amplification strategy significantly improved the sensitivity and specificity of the biosensor. The designed sensing platform was capable of miRNA detection in complex samples, which provided a new idea for biomarker detection, holding promising potential in clinical diagnosis and disease screening.
Collapse
Affiliation(s)
- Hongying Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Yunxia Jin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Hui Qian
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Yuqi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Ting Bao
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Zhen Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Wei Wen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiuhua Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed By the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
10
|
Ge F, Ding W, Han C, Zhang L, Liu Q, Zhao J, Luo Z, Jia C, Qu P, Zhang L. Electrochemical Sensor for the Detection and Accurate Early Diagnosis of Ovarian Cancer. ACS Sens 2024; 9:2897-2906. [PMID: 38776471 DOI: 10.1021/acssensors.3c02776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ovarian cancer (OC) has the highest mortality rate among malignant tumors, primarily because it is difficult to diagnose early. Exosomes, a type of extracellular vesicle rich in parental information, have garnered significant attention in the field of cancer diagnosis and treatment. They play an important regulatory role in the occurrence, development, and metastasis of OC. Consequently, exosomes have emerged as noninvasive biomarkers for early cancer detection. Therefore, identifying cancer-derived exosomes may offer a novel biomarker for the early detection of OC. In this study, we developed a metal-organic frameworks assembled "double hook"-type aptamer electrochemical sensor, which enables accurate early diagnosis of OC. Under optimal experimental conditions, electrochemical impedance spectroscopy technology demonstrated a good linear relationship within the concentration range of 31-3.1 × 106 particles per microliter, with a detection limit as low as 12 particles per microliter. The universal exosome detection platform is constructed, and this platform can not only differentiate between high-grade serous ovarian cancer (HGSOC) patients and healthy individuals but also distinguish between HGSOC patients and nonhigh-grade serous OC (non-HGSOC). Consequently, it provides a novel strategy for the early diagnosis of OC and holds great significance in clinical differential diagnosis.
Collapse
Affiliation(s)
- Feng Ge
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin 301700, China
| | - Wei Ding
- Department of Gynecological Oncology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin 300100, China
| | - Cong Han
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Limin Zhang
- Department of Internal Medicine, Leling Hospital of Traditional Chinese Medicine, Dezhou, Shandong 253600, P. R. China
| | - Qirui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Jian Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Zhaofeng Luo
- Hangzhong Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Chao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
| | - Pengpeng Qu
- Clinical School of Obstetrics and Gynecology Center, Tianjin Medical University, Tianjin 301700, China
- Department of Gynecological Oncology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin 300100, China
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300350, P. R. China
- Nankai International Advanced Research Institute, Shenzhen, Guangdong 518045, P. R. China
| |
Collapse
|
11
|
Gong X, Li R, Zhang J, Zhang P, Jiang Z, Hu L, Liu X, Wang Y, Wang F. Scaling up of a Self-Confined Catalytic Hybridization Circuit for Robust microRNA Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400517. [PMID: 38613838 PMCID: PMC11165520 DOI: 10.1002/advs.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Indexed: 04/15/2024]
Abstract
The precise regulation of cellular behaviors within a confined, crowded intracellular environment is highly amenable in diagnostics and therapeutics. While synthetic circuitry system through a concatenated chemical reaction network has rarely been reported to mimic dynamic self-assembly system. Herein, a catalytic self-defined circuit (CSC) for the hierarchically concatenated assembly of DNA domino nanostructures is engineered. By incorporating pre-sealed symmetrical fragments into the preying hairpin reactants, the CSC system allows the hierarchical DNA self-assembly via a microRNA (miRNA)-powered self-sorting catalytic hybridization reaction. With minimal strand complexity, this self-sustainable CSC system streamlined the circuit component and achieved localization-intensified cascaded signal amplification. Profiting from the self-adaptively concatenated hybridization reaction, a reliable and robust method has been achieved for discriminating carcinoma tissues from the corresponding para-carcinoma tissues. The CSC-sustained self-assembly strategy provides a comprehensive and smart toolbox for organizing various hierarchical DNA nanostructures, which may facilitate more insights for clinical diagnosis and therapeutic assessment.
Collapse
Affiliation(s)
- Xue Gong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityCollege of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Ruomeng Li
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityCollege of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Jiajia Zhang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Pu Zhang
- College of PharmacyChongqing Medical UniversityChongqing400016P. R. China
| | - Zhongwei Jiang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Lianzhe Hu
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Xiaoqing Liu
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityCollege of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Yi Wang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education)Chongqing Key Laboratory of Green Catalysis Materials and TechnologyCollege of ChemistryChongqing Normal UniversityChongqing401331P. R. China
| | - Fuan Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityCollege of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
12
|
Malina J, Crowley JD, Brabec V. Interaction of dinuclear Co(III) cylinders with higher-order DNA structures. Chem Biol Interact 2024; 395:111031. [PMID: 38703805 DOI: 10.1016/j.cbi.2024.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Alternative DNA structures play critical roles in fundamental biological processes linked to human diseases. Thus, targeting and stabilizing these structures by specific ligands could affect the progression of cancer and other diseases. Here, we describe, using methods of molecular biophysics, the interactions of two oxidatively locked [Co2L3]6+ cylinders, rac-2 and meso-1, with diverse alternative DNA structures, such as junctions, G quadruplexes, and bulges. This study was motivated by earlier results demonstrating that both Co(III) cylinders exhibit potent and selective activity against cancer cells, accumulate in the nucleus of cancer cells, and prove to be efficient DNA binders. The results show that the bigger cylinder rac-2 stabilizes all DNA structures, while the smaller cylinder meso-1 stabilizes just the Y-shaped three-way junctions. Collectively, the results of this study suggest that the stabilization of alternative DNA structures by Co(III) cylinders investigated in this work might contribute to the mechanism of their biological activity.
Collapse
Affiliation(s)
- Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic
| | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, CZ-61200, Brno, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, CZ-78371, Olomouc, Czech Republic.
| |
Collapse
|
13
|
Xin MK, Sun X, Tang HW, Li CY. Near-Infrared Light-Powered and DNA Nanocage-Confined Catalytic Hairpin Assembly Nanobiosensor with a Nucleic Acid Restriction Behavior and Reinforced Enzymatic Resistance for Robust Imaging Assay in Live Biosystems. Anal Chem 2024; 96:7101-7110. [PMID: 38663376 DOI: 10.1021/acs.analchem.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While DNA amplifier-built nanobiosensors featuring a DNA polymerase-free catalytic hairpin assembly (CHA) reaction have shown promise in fluorescence imaging assays within live biosystems, challenges persist due to unsatisfactory precision stemming from premature activation, insufficient sensitivity arising from low reaction kinetics, and poor biostability caused by endonuclease degradation. In this research, we aim to tackle these issues. One aspect involves inserting an analyte-binding unit with a photoinduced cleavage bond to enable a light-powered notion. By utilizing 808 nm near-infrared (NIR) light-excited upconversion luminescence as the ultraviolet source, we achieve entirely a controllable sensing event during the biodelivery phase. Another aspect refers to confining the CHA reaction within the finite space of a DNA self-assembled nanocage. Besides the accelerated kinetics (up to 10-fold enhancement) resulting from the nucleic acid restriction behavior, the DNA nanocage further provides a 3D rigid skeleton to reinforce enzymatic resistance. After selecting a short noncoding microRNA (miRNA-21) as the modeled low-abundance sensing analyte, we have verified that the innovative NIR light-powered and DNA nanocage-confined CHA nanobiosensor possesses remarkably high sensitivity and specificity. More importantly, our sensing system demonstrates a robust imaging capability for this cancer-related universal biomarker in live cells and tumor-bearing mouse bodies, showcasing its potential applications in disease analysis.
Collapse
Affiliation(s)
- Meng-Kun Xin
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cheng-Yu Li
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
14
|
Guo H, Fu Y, Chen S, Wei Y, Xie L, Chen M. Electrochemical cytosensor utilizing tetrahedral DNA/bimetallic AuPd holothurian-shaped nanoparticles for ultrasensitive non-destructive detection of circulating tumor cells. Mikrochim Acta 2024; 191:298. [PMID: 38709403 DOI: 10.1007/s00604-024-06378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.
Collapse
Affiliation(s)
- Hong Guo
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yang Fu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Siyu Chen
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yuxin Wei
- School of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Linzhi Xie
- School of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Mei Chen
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
15
|
Deng J, Liu C, Sun J. DNA-Based Nanomaterials for Analysis of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303092. [PMID: 38016069 DOI: 10.1002/adma.202303092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/21/2023] [Indexed: 11/30/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived nanovesicles comprising a myriad of molecular cargo such as proteins and nucleic acids, playing essential roles in intercellular communication and physiological and pathological processes. EVs have received substantial attention as noninvasive biomarkers for disease diagnosis and prognosis. Owing to their ability to recognize protein and nucleic acid targets, DNA-based nanomaterials with excellent programmability and modifiability provide a promising tool for the sensitive and accurate detection of molecular cargo carried by EVs. In this perspective, recent advancements in EV analysis using a variety of DNA-based nanomaterials are summarized, which can be broadly classified into three categories: linear DNA probes, DNA nanostructures, and hybrid DNA nanomaterials. The design, construction, advantages, and disadvantages of different types of DNA nanomaterials, as well as their performance for detecting EVs are reviewed. The challenges and opportunities in the field of EV analysis by DNA nanomaterials are also discussed.
Collapse
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Sun X, Chen Y, Li H, Xing W, Chen M, Wang J, Ye L. A cubic DNA nanocage probe for in situ analysis of miRNA-10b in tumor-derived extracellular vesicles. Chem Commun (Camb) 2024; 60:4777-4780. [PMID: 38597795 DOI: 10.1039/d4cc01049c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A cubic DNA nanocage probe is able to enter EVs derived from MDA-MB-231 cells and react with miRNA-10b. The probe-loaded EVs were employed to monitor the process of entry of miRNA-10b into MCF-10A cells, allowing visualization of EV-mediated intercellular communication of miRNA-10b between the cancer cells.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Yafei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Haiyan Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Wei Xing
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100 Lund, Sweden.
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100 Lund, Sweden.
| |
Collapse
|
17
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
18
|
Zhao X, Xu Y, Chen Z, Tang C, Mi X. Encoding fluorescence intensity with tetrahedron DNA nanostructure based FRET effect for bio-detection. Biosens Bioelectron 2024; 248:115994. [PMID: 38181517 DOI: 10.1016/j.bios.2023.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Biocoding technology constructed by readable tags with distinct signatures is a brand-new bioanalysis method to realize multiplexed identification and bio-information decoding. In this study, a novel fluorescence intensity coding technology termed Tetra-FICT was reported based on tetrahedron DNA nanostructure (TDN) carrier and Főrster Resonance Energy Transfer (FRET) effect. By modulating numbers and distances of Cy3 and Cy5 at four vertexes of TDN, different fluorescence intensities of twenty-six samples were produced at ∼565.0 nm (FICy3) and ∼665.0 nm (FICy5) by detecting fluorescence spectra. By developing an error correction mechanism, eleven codes were established based on divided intensity ranges of the final FICy3 together with FICy5 (Final-FICy3&FICy5). These resulting codes were used to construct barcode probes, with three miRNA biomarkers (miRNA-210, miRNA-199a and miRNA-21) as cases for multiplexed bio-assay. The high specificity and sensitivity were also demonstrated for the detection of miRNA-210. Overall, the proposed Tetra-FICT enriched the toolbox of fluorescence coding, which could be applied to multiplexing biomarkers detection.
Collapse
Affiliation(s)
- Xiaoshuang Zhao
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Yi Xu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Ziting Chen
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Chengren Tang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Xianqiang Mi
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050, China; Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China; School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Science, Beijing, 100049, China.
| |
Collapse
|
19
|
Mousazadeh M, Daneshpour M, Rafizadeh Tafti S, Shoaie N, Jahanpeyma F, Mousazadeh F, Khosravi F, Khashayar P, Azimzadeh M, Mostafavi E. Nanomaterials in electrochemical nanobiosensors of miRNAs. NANOSCALE 2024; 16:4974-5013. [PMID: 38357721 DOI: 10.1039/d3nr03940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Nanomaterial-based biosensors have received significant attention owing to their unique properties, especially enhanced sensitivity. Recent advancements in biomedical diagnosis have highlighted the role of microRNAs (miRNAs) as sensitive prognostic and diagnostic biomarkers for various diseases. Current diagnostics methods, however, need further improvements with regards to their sensitivity, mainly due to the low concentration levels of miRNAs in the body. The low limit of detection of nanomaterial-based biosensors has turned them into powerful tools for detecting and quantifying these biomarkers. Herein, we assemble an overview of recent developments in the application of different nanomaterials and nanostructures as miRNA electrochemical biosensing platforms, along with their pros and cons. The techniques are categorized based on the nanomaterial used.
Collapse
Affiliation(s)
- Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Daneshpour
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Livogen Pharmed, Research and Innovation Center, Tehran, Iran
| | - Saeed Rafizadeh Tafti
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
| | - Nahid Shoaie
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Biotechnology, Tarbiat Modares University of Medical Science, Tehran, Iran
| | - Faezeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Khosravi
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, 9050, Ghent, Belgium.
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran.
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999, Yazd, Iran
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 89165-887, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
20
|
Quazi MZ, Choi JH, Kim M, Park N. DNA and Nanomaterials: A Functional Combination for DNA Sensing. ACS APPLIED BIO MATERIALS 2024; 7:778-786. [PMID: 38270150 DOI: 10.1021/acsabm.3c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Recent decades have experienced tough situations due to the lack of reliable diagnostic facilities. The most recent cases occurred during the pandemic, where researchers observed the lack of diagnostic facilities with precision. Microorganisms and viral disease's ability to escape diagnosis has been a global challenge. DNA always has been a unique moiety with a strong and precise base-paired structure. DNA in human and foreign particles makes identification possible through base pairing. Since then, researchers have focused heavily on designing diagnostic assays targeting DNA in particular. Moreover, DNA nanotechnology has contributed vastly to designing composite nanomaterials by combining DNA/nucleic acids with functional nanomaterials and inorganic nanoparticles exploiting their physicochemical properties. These nanomaterials often exhibit unique or enhanced properties due to the synergistic activity of the many components. The capabilities of DNA and additional nanomaterials have shown the combination of robust and advanced tailoring of biosensors. Preceding findings state that the conventional strategies have exhibited certain limitations such as a low range of target detection, less biodegradability, subordinate half-life, and high susceptibility to microenvironments; however, a DNA-nanomaterial-based biosensor has overcome these limitations meaningfully. Additionally, the unique properties of nucleic acids have been studied extensively due to their high signal conduction abilities. Here, we review recent studies on DNA-nanomaterial-based biosensors, their mechanism of action, and improved/updated strategies in vivo and in situ. Furthermore, this review highlights the recent methodologies on DNA utilization to exploit the interfacial properties of nanomaterials in DNA sensing. Lastly, the review concludes with the limitations/challenges and future directions.
Collapse
Affiliation(s)
- Mohzibudin Z Quazi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Jang Hyeon Choi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Minchul Kim
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and The Natural Science Research Institute, Myongji University, Myongji-ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| |
Collapse
|
21
|
Yu Y, Fu W, Xie Y, Jiang X, Wang H, Yang X. A review on recent advances in assays for DNMT1: a promising diagnostic biomarker for multiple human cancers. Analyst 2024; 149:1002-1021. [PMID: 38204433 DOI: 10.1039/d3an01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.
Collapse
Affiliation(s)
- Yang Yu
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wen Fu
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yaxing Xie
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Wang
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
22
|
He JW, Sun X, Tang HW, Liu D, Li CY. Photoresponsive CHA-Integrated Self-Propelling 3D DNA Walking Amplifier within the Concentration Localization Effect of DNA Molecular Framework Enables Highly Efficient Fluorescence Bioimaging. Anal Chem 2024; 96:2142-2151. [PMID: 38258616 DOI: 10.1021/acs.analchem.3c04920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
While three-dimensional (3D) DNA walking amplifiers hold considerable promise in the construction of advanced DNA-based fluorescent biosensors for bioimaging, they encounter certain difficulties such as inadequate sensitivity, premature activation, the need for exogenous propelling forces, and low reaction rates. In this contribution, a variety of profitable solutions have been explored. First, a catalytic hairpin assembly (CHA)-achieved nonenzymatic isothermal nucleic acid amplification is integrated to enhance sensitivity. Subsequently, one DNA component is simply functionalized with a photocleavage-bond to conduct a photoresponsive manner, whereby the target recognition occurs only when the biosensor is exposed to an external ultraviolet light source, overcoming premature activation during biodelivery. Furthermore, a special self-propelling walking mechanism is implemented by reducing biothiols to MnO2 nanosheets, thereby propelling forces that are self-supplied to a Mn2+-reliant DNAzyme. By carrying the biosensing system with a DNA molecular framework to induce a unique concentration localization effect, the nucleic acid contact reaction rate is notably elevated by 6 times. Following these, an ultrasensitive in vitro detection performance with a limit of detection down to 2.89 fM is verified for a cancer-correlated microRNA biomarker (miRNA-21). Of particular importance, our multiple concepts combined 3D DNA walking amplifier that enables highly efficient fluorescence bioimaging in live cells and even bodies, exhibiting a favorable application prospect in disease analysis.
Collapse
Affiliation(s)
- Jing-Wei He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Da Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
23
|
Wang W, Lin M, Chen YR, Wang W, Lv J, Chen Y, Yin H, Shen Z, Wu ZS. Y-Shaped Backbone-Rigidified DNA Tiles for the Construction of Supersized Nondeformable Tetrahedrons for Precise Cancer Therapies. Anal Chem 2024; 96:1488-1497. [PMID: 38232037 DOI: 10.1021/acs.analchem.3c03923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
While engineered DNA nanoframeworks have been extensively exploited for delivery of diagnostic and therapeutic regents, DNA tiling-based DNA frameworks amenable to applications in living systems lag much behind. In this contribution, by developing a Y-shaped backbone-based DNA tiling technique, we assemble Y-shaped backbone-rigidified supersized DNA tetrahedrons (RDT) with 100% efficiency for precisely targeted tumor therapy. RDT displays unparalleled rigidness and unmatched resistance to nuclease degradation so that it almost does not deform under the force exerted by the atomic force microscopy tip, and the residual amount is not less than 90% upon incubating in biological media for 24 h, displaying at least 11.6 times enhanced degradation resistance. Without any targeting ligand, RDT enters the cancer cell in a targeted manner, and internalization specificity is up to 15.8. Moreover, 77% of RDT objects remain intact within living cells for 14 h. The drug loading content of RDT is improved by 4-8 times, and RDT almost 100% eliminates the unintended drug leakage in a stimulated physiological medium. Once systemically administrated into HeLa tumor-bearing mouse models, doxorubicin-loaded RDTs preferentially accumulate in tumor sites and efficiently suppress tumor growth without detectable off-target toxicity. The Y-DNA tiling technique offers invaluable insights into the development of structural DNA nanotechnology for precise medicine.
Collapse
Affiliation(s)
- Weijun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang 330032, China
| | - Mengling Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jinrui Lv
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaxin Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hongwei Yin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhifa Shen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
24
|
Sun Z, Ren Y, Zhu W, Xiao Y, Wu H. DNA nanotechnology-based nucleic acid delivery systems for bioimaging and disease treatment. Analyst 2024; 149:599-613. [PMID: 38221846 DOI: 10.1039/d3an01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Nucleic acids, including DNA and RNA, have been considered as powerful and functional biomaterials owing to their programmable structure, good biocompatibility, and ease of synthesis. However, traditional nucleic acid-based probes have always suffered from inherent limitations, including restricted cell internalization efficiency and structural instability. In recent years, DNA nanotechnology has shown great promise for the applications of bioimaging and drug delivery. The attractive superiorities of DNA nanostructures, such as precise geometries, spatial addressability, and improved biostability, have enabled them to be a novel category of nucleic acid delivery systems for biomedical applications. In this review, we introduce the development of DNA nanotechnology, and highlight recent advances of DNA nanostructure-based delivery systems for cellular imaging and therapeutic applications. Finally, we propose the challenges as well as opportunities for the future development of DNA nanotechnology in biomedical research.
Collapse
Affiliation(s)
- Zhaorong Sun
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Yingjie Ren
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wenjun Zhu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuliang Xiao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Han Wu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
25
|
Foguel MV, Zamora V, Ojeda J, Reed M, Bennett A, Calvo-Marzal P, Gerasimova YV, Kolpashchikov D, Chumbimuni-Torres KY. DNA nanotechnology for nucleic acid analysis: sensing of nucleic acids with DNA junction-probes. Analyst 2024; 149:968-974. [PMID: 38197474 PMCID: PMC11439508 DOI: 10.1039/d3an01707a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
DNA nanotechnology deals with the design of non-naturally occurring DNA nanostructures that can be used in biotechnology, medicine, and diagnostics. In this study, we introduced a nucleic acid five-way junction (5WJ) structure for direct electrochemical analysis of full-length biological RNAs. To the best of our knowledge, this is the first report on the interrogation of such long nucleic acid sequences by hybridization probes attached to a solid support. A hairpin-shaped electrode-bound oligonucleotide hybridizes with three adaptor strands, one of which is labeled with methylene blue (MB). The four strands are combined into a 5WJ structure only in the presence of specific DNA or RNA analytes. Upon interrogation of a full-size 16S rRNA in the total RNA sample, the electrode-bound MB-labeled 5WJ association produces a higher signal-to-noise ratio than electrochemical nucleic acid biosensors of alternative design. This advantage was attributed to the favorable geometry on the 5WJ nanostructure formed on the electrode's surface. The 5WJ biosensor is a cost-efficient alternative to the traditional electrochemical biosensors for the analysis of nucleic acids due to the universal nature of both the electrode-bound and MB-labeled DNA components.
Collapse
Affiliation(s)
- Marcos V Foguel
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Victor Zamora
- Escuela Professional de Quimica, Facultad de Ciencias, Universidad Nacional Ingenieria, Av. Tupac 210, Lima, Peru
| | - Julio Ojeda
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Mark Reed
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Alexander Bennett
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Percy Calvo-Marzal
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Yulia V Gerasimova
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| | - Dmitry Kolpashchikov
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
- Burnett School of Biomedical Science, university of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA
| | - Karin Y Chumbimuni-Torres
- Department of Chemistry. University of Central Florida, 4000 Central Florida Boulevard, Orlando, Fl 32816, USA.
| |
Collapse
|
26
|
Wang DX, Liu B, Han GM, Li Q, Kong DM, Enderlein J, Chen T. Metal-Induced Energy Transfer (MIET) Imaging of Cell Surface Engineering with Multivalent DNA Nanobrushes. ACS NANO 2024. [PMID: 38231016 PMCID: PMC10883130 DOI: 10.1021/acsnano.3c10162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The spacing between cells has a significant impact on cell-cell interactions, which are critical to the fate and function of both individual cells and multicellular organisms. However, accurately measuring the distance between cell membranes and the variations between different membranes has proven to be a challenging task. In this study, we employ metal-induced energy transfer (MIET) imaging/spectroscopy to determine and track the intermembrane distance and variations with nanometer precision. We have developed a DNA-based molecular adhesive called the DNA nanobrush, which serves as a cellular adhesive for connecting the plasma membranes of different cells. By manipulating the number of base pairs within the DNA nanobrush, we can modify various aspects of membrane-membrane interactions such as adhesive directionality, distance, and forces. We demonstrate that such nanometer-level changes can be detected with MIET imaging/spectroscopy. Moreover, we successfully employed MIET to measure distance variations between a cellular plasma membrane and a model membrane. This experiment not only showcases the effectiveness of MIET as a powerful tool for accurately quantifying membrane-membrane interactions but also validates the potential of DNA nanobrushes as cellular adhesives. This innovative method holds significant implications for advancing the study of multicellular interactions.
Collapse
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Bo Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingnan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Tao Chen
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Wu X, Shuai X, Nie K, Li J, Liu L, Wang L, Huang C, Li C. DNA-Based Fluorescent Nanoprobe for Cancer Cell Membrane Imaging. Molecules 2024; 29:267. [PMID: 38202850 PMCID: PMC10780466 DOI: 10.3390/molecules29010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
As an important barrier between the cytoplasm and the microenvironment of the cell, the cell membrane is essential for the maintenance of normal cellular physiological activities. An abnormal cell membrane is a crucial symbol of body dysfunction and the occurrence of variant diseases; therefore, the visualization and monitoring of biomolecules associated with cell membranes and disease markers are of utmost importance in revealing the biological functions of cell membranes. Due to their biocompatibility, programmability, and modifiability, DNA nanomaterials have become increasingly popular in cell fluorescence imaging in recent years. In addition, DNA nanomaterials can be combined with the cell membrane in a specific manner to enable the real-time imaging of signal molecules on the cell membrane, allowing for the real-time monitoring of disease occurrence and progression. This article examines the recent application of DNA nanomaterials for fluorescence imaging on cell membranes. First, we present the conditions for imaging DNA nanomaterials in the cell membrane microenvironment, such as the ATP, pH, etc. Second, we summarize the imaging applications of cell membrane receptors and other molecules. Finally, some difficulties and challenges associated with DNA nanomaterials in the imaging of cell membranes are presented.
Collapse
Affiliation(s)
- Xiaoqiao Wu
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China;
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Xinjia Shuai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Kunhan Nie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Jing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Lin Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Lijuan Wang
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China;
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Chunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| |
Collapse
|
28
|
Zhang Y, Wu L, Su X, Liang H. Construction of a highly efficient DNA nanotube sensor with peroxide-like activity. J Mater Chem B 2023; 12:240-249. [PMID: 38086676 DOI: 10.1039/d3tb01984e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The G-quadruplex/heme complexes are special DNA-based artificial metalloenzymes with peroxidase-like activity and are widely used in biosensing and biocatalysis. However, their peroxidase-like activity is not satisfactory. Due to the high programmability and good stability of DNA, DNA as a scaffold material is promising for enhancing the activity of artificial metalloenzymes. In this work, an effective DNA nanotube-based peroxidase was constructed using a self-assembly strategy. To improve the activity of G-quadruplex/heme complexes, a new method for the construction of G-quadruplex/heme complex arrays was proposed in a simple and inexpensive way. By designing the toes of DNA nanotubes as G-quadruplexes, G-quadruplex arrays could be formed on pure DNA nanotubes, and then the G-quadruplex arrays bind to heme to form a nanotube-supported DNAzyme termed as DNTzyme. Agarose gel electrophoresis, circular dichroism, and fluorescence microscopy were used to characterize DNTzyme. What is more, because the loading of DNAzyme on DNA nanotubes can increase their biological stability, a hydrogen peroxide detection sensor was constructed using the enhanced enzymatic activity and excellent stability of DNTzyme. The sensor could accurately and efficiently detect peroxide and show enhanced fluorescence with a detection limit of 49 nM for H2O2 and 1.4 μM for TBHP, and a color development time of about 5 min. This sensor is expected to have applications in bio-detection, biocatalysis, and drug delivery.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lingqi Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
29
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
30
|
Wei R, Wang K, Liu X, Shi M, Pan W, Li N, Tang B. Stimuli-responsive probes for amplification-based imaging of miRNAs in living cells. Biosens Bioelectron 2023; 239:115584. [PMID: 37619479 DOI: 10.1016/j.bios.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important biomarkers in biomedicine and bioimaging due to their roles in various physiological and pathological processes. Real-time and in situ monitoring of dynamic fluctuation of miRNAs in living cells is crucial for understanding these processes. However, current miRNA imaging probes still have some limitations, including the lack of effective amplification methods for low abundance miRNAs bioanalysis and uncontrollable activation, leading to background signals and potential false-positive results. Therefore, researchers have been integrating activatable devices with miRNA amplification techniques to design stimuli-responsive nanoprobes for "on-demand" and precise imaging of miRNAs in living cells. In this review, we summarize recent advances of stimuli-responsive probes for the amplification-based imaging of miRNAs in living cells and discuss the future challenges and opportunities in this field, aiming to provide valuable insights for accurate disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Kaixian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Mingwan Shi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
31
|
Valenzuela-Amaro HM, Aguayo-Acosta A, Meléndez-Sánchez ER, de la Rosa O, Vázquez-Ortega PG, Oyervides-Muñoz MA, Sosa-Hernández JE, Parra-Saldívar R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. BIOSENSORS 2023; 13:922. [PMID: 37887115 PMCID: PMC10605657 DOI: 10.3390/bios13100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.
Collapse
Affiliation(s)
- Hiram Martin Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
32
|
Meng R, Zhang X, Liu J, Zhou Y, Zhang P, Chai Y, Yuan R. Dual-layer 3D DNA nanostructure: The next generation of ultrafast DNA nanomachine for microRNA sensing and intracellular imaging. Biosens Bioelectron 2023; 237:115517. [PMID: 37459686 DOI: 10.1016/j.bios.2023.115517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 08/13/2023]
Abstract
The working efficiency of traditional 3D DNA nanomachines is extremely restricted due to the complex DNA components modified on nanoparticles in the same spatial height. Herein, an ultrafast dual-layer 3D DNA nanomachine (UDDNM) based on catalytic hairpin assembly (CHA) was developed by assembling two different lengths of hairpin DNA on the surface of gold nanoparticles, the long hairpin 1 (H1), to capture the trigger, and the short hairpin 2 (H2), as the signal probe, to recycle the trigger. Compared to the traditional single-layer 3D DNA nanomachine, the dual-layer 3D DNA nanostructure greatly enhances the effective collision between trigger and targeted DNA probe, H1, since the H1 located in outer layer would react with the trigger, inhibiting the invalid collision between the trigger and residual DNA component, H2, and remarkably decreasing the steric hindrance associated with the nucleic acids layer around the nanoparticles. Especially, when the distance of two layers was fixed at 3 nm, the corresponding UDDNM could accomplish the overall reaction only in 3 min with a dramatically high initial rate of up to 5.93 × 10-7 M s-1, which was at least 5-fold beyond that of the typical single-layer 3D DNA nanomachines. As a proof of concept, the described UDDNM was successfully applied in ultrasensitive fluorescence detection and sensitive intracellular imaging of miRNA-21. Consequently, our strategy, based on the creation of dual-layer 3D DNA nanostructure, may create a new approach to designing the next generation of DNA nanomachine and has enormous potential for applications in bio-analysis, logic gate operations, and clinical diagnoses.
Collapse
Affiliation(s)
- Rui Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xiaolong Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jiali Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Pu Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
33
|
Quazi MZ, Hwang J, Song Y, Park N. Hydrogel-Based Biosensors for Effective Therapeutics. Gels 2023; 9:545. [PMID: 37504424 PMCID: PMC10378974 DOI: 10.3390/gels9070545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Nanotechnology and polymer engineering are navigating toward new developments to control and overcome complex problems. In the last few decades, polymer engineering has received researchers' attention and similarly, polymeric network-engineered structures have been vastly studied. Prior to therapeutic application, early and rapid detection analyses are critical. Therefore, developing hydrogel-based sensors to manage the acute expression of diseases and malignancies to devise therapeutic approaches demands advanced nanoengineering. However, nano-therapeutics have emerged as an alternative approach to tackling strenuous diseases. Similarly, sensing applications for multiple kinds of analytes in water-based environments and other media are gaining wide interest. It has also been observed that these functional roles can be used as alternative approaches to the detection of a wide range of biomolecules and pathogenic proteins. Moreover, hydrogels have emerged as a three-dimensional (3D) polymeric network that consists of hydrophilic natural or synthetic polymers with multidimensional dynamics. The resemblance of hydrogels to tissue structure makes them more unique to study inquisitively. Preceding studies have shown a vast spectrum of synthetic and natural polymer applications in the field of biotechnology and molecular diagnostics. This review explores recent studies on synthetic and natural polymers engineered hydrogel-based biosensors and their applications in multipurpose diagnostics and therapeutics. We review the latest studies on hydrogel-engineered biosensors, exclusively DNA-based and DNA hydrogel-fabricated biosensors.
Collapse
Affiliation(s)
- Mohzibudin Z Quazi
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Jimin Hwang
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Youngseo Song
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Gyeonggi-do, Republic of Korea
| |
Collapse
|
34
|
Huang L, Zhang Z. Recent Advances in the DNA-Mediated Multi-Mode Analytical Methods for Biological Samples. BIOSENSORS 2023; 13:693. [PMID: 37504092 PMCID: PMC10377368 DOI: 10.3390/bios13070693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
DNA-mediated nanotechnology has become a research hot spot in recent decades and is widely used in the field of biosensing analysis due to its distinctive properties of precise programmability, easy synthesis and high stability. Multi-mode analytical methods can provide sensitive, accurate and complementary analytical information by merging two or more detection techniques with higher analytical throughput and efficiency. Currently, the development of DNA-mediated multi-mode analytical methods by integrating DNA-mediated nanotechnology with multi-mode analytical methods has been proved to be an effective assay for greatly enhancing the selectivity, sensitivity and accuracy, as well as detection throughput, for complex biological analysis. In this paper, the recent progress in the preparation of typical DNA-mediated multi-mode probes is reviewed from the aspect of deoxyribozyme, aptamer, templated-DNA and G-quadruplex-mediated strategies. Then, the advances in DNA-mediated multi-mode analytical methods for biological samples are summarized in detail. Moreover, the corresponding current applications for biomarker analysis, bioimaging analysis and biological monitoring are introduced. Finally, a proper summary is given and future prospective trends are discussed, hopefully providing useful information to the readers in this research field.
Collapse
Affiliation(s)
- Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
35
|
Zhuo C, Song Z, Cui J, Gong Y, Tang Q, Zhang K, Song X, Liao X. Electrochemical biosensor strategy combining DNA entropy-driven technology to activate CRISPR-Cas13a activity and triple-stranded nucleic acids to detect SARS-CoV-2 RdRp gene. Mikrochim Acta 2023; 190:272. [PMID: 37351704 DOI: 10.1007/s00604-023-05848-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023]
Abstract
By merging DNA entropy-driven technology with triple-stranded nucleic acids in an electrochemical biosensor to detect the SARS-CoV-2 RdRp gene, we tackled the challenges of false negatives and the high cost of SARS-CoV-2 detection. The approach generates a CRISPR-Cas 13a-activated RNA activator, which then stimulates CRISPR-Cas 13a activity using an entropy-driven mechanism. The activated CRISPR-Cas 13a can cleave Hoogsteen DNA due to the insertion of two uracil (-U-U-) in Hoogsteen DNA. The DNA tetrahedra changed on the electrode surface and can therefore not construct a three-stranded structure after cleaving Hoogsteen DNA. Significantly, this DNA tetrahedron/Hoogsteen DNA-based biosensor can regenerate at pH = 10.0, which keeps Hoogsteen DNA away from the electrode surface, allowing the biosensor to function at pH = 7.0. We could use this technique to detect the SARS-CoV-2 RdRp gene with a detection limit of 89.86 aM. Furthermore, the detection method is very stable and repeatable. This technique offers the prospect of detecting SARS-CoV-2 at a reasonable cost. This work has potential applications in the dynamic assessment of the diagnostic and therapeutic efficacy of SARS-CoV-2 infection and in the screening of environmental samples.
Collapse
Affiliation(s)
- Chenyi Zhuo
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Zichun Song
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Jiuying Cui
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Yuanxun Gong
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Qianli Tang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 210044, Nanjing, People's Republic of China.
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, 214063, China.
| | - Xinlei Song
- Maternity & Child Care Center of Dezhou, Dezhou, 25300, China
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, China.
| |
Collapse
|
36
|
Li W, Zhang P, Liu C, Xu Y, Gan Z, Kang L, Hou Y. Oncogene-targeting nanoprobes for early imaging detection of tumor. J Nanobiotechnology 2023; 21:197. [PMID: 37340418 DOI: 10.1186/s12951-023-01943-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023] Open
Abstract
Malignant tumors have been one of the major reasons for deaths worldwide. Timely and accurate diagnosis as well as effective intervention of tumors play an essential role in the survival of patients. Genomic instability is the important foundation and feature of cancer, hence, in vivo oncogene imaging based on novel probes provides a valuable tool for the diagnosis of cancer at early-stage. However, the in vivo oncogene imaging is confronted with great challenge, due to the extremely low copies of oncogene in tumor cells. By combining with various novel activatable probes, the molecular imaging technologies provide a feasible approach to visualize oncogene in situ, and realize accurate treatment of tumor. This review aims to declare the design of nanoprobes responded to tumor associated DNA or RNA, and summarize their applications in detection and bioimaging for tumors. The significant challenges and prospective of oncogene-targeting nanoprobes towards tumors diagnosis are revealed as well.
Collapse
Affiliation(s)
- Wenyue Li
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Peisen Zhang
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China.
| | - Chuang Liu
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Yuping Xu
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Zhihua Gan
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China.
| | - Yi Hou
- College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China.
| |
Collapse
|
37
|
Ghosal S, Bag S, Bhowmik S. Unravelling the Drug Encapsulation Ability of Functional DNA Origami Nanostructures: Current Understanding and Future Prospects on Targeted Drug Delivery. Polymers (Basel) 2023; 15:1850. [PMID: 37111997 PMCID: PMC10144338 DOI: 10.3390/polym15081850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Rapid breakthroughs in nucleic acid nanotechnology have always driven the creation of nano-assemblies with programmable design, potent functionality, good biocompatibility, and remarkable biosafety during the last few decades. Researchers are constantly looking for more powerful techniques that provide enhanced accuracy with greater resolution. The self-assembly of rationally designed nanostructures is now possible because of bottom-up structural nucleic acid (DNA and RNA) nanotechnology, notably DNA origami. Because DNA origami nanostructures can be organized precisely with nanoscale accuracy, they serve as a solid foundation for the exact arrangement of other functional materials for use in a number of applications in structural biology, biophysics, renewable energy, photonics, electronics, medicine, etc. DNA origami facilitates the creation of next-generation drug vectors to help in the solving of the rising demand on disease detection and therapy, as well as other biomedicine-related strategies in the real world. These DNA nanostructures, generated using Watson-Crick base pairing, exhibit a wide variety of properties, including great adaptability, precise programmability, and exceptionally low cytotoxicity in vitro and in vivo. This paper summarizes the synthesis of DNA origami and the drug encapsulation ability of functionalized DNA origami nanostructures. Finally, the remaining obstacles and prospects for DNA origami nanostructures in biomedical sciences are also highlighted.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry 607402, India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry 607402, India
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
38
|
Shishparenok AN, Furman VV, Zhdanov DD. DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers (Basel) 2023; 15:2151. [PMID: 37046816 PMCID: PMC10093432 DOI: 10.3390/cancers15072151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
DNA nanotechnology has significantly advanced and might be used in biomedical applications, drug delivery, and cancer treatment during the past few decades. DNA nanomaterials are widely used in biomedical research involving biosensing, bioimaging, and drug delivery since they are remarkably addressable and biocompatible. Gradually, modified nucleic acids have begun to be employed to construct multifunctional DNA nanostructures with a variety of architectural designs. Aptamers are single-stranded nucleic acids (both DNAs and RNAs) capable of self-pairing to acquire secondary structure and of specifically binding with the target. Diagnosis and tumor therapy are prospective fields in which aptamers can be applied. Many DNA nanomaterials with three-dimensional structures have been studied as drug delivery systems for different anticancer medications or gene therapy agents. Different chemical alterations can be employed to construct a wide range of modified DNA nanostructures. Chemically altered DNA-based nanomaterials are useful for drug delivery because of their improved stability and inclusion of functional groups. In this work, the most common oligonucleotide nanomaterials were reviewed as modern drug delivery systems in tumor cells.
Collapse
Affiliation(s)
- Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
| | - Vitalina V. Furman
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt 49A, 197101 St. Petersburg, Russia
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
39
|
Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: The influence of morphology on biological fate. APPLIED PHYSICS REVIEWS 2023; 10:011304. [PMID: 36874908 PMCID: PMC9869343 DOI: 10.1063/5.0121820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/12/2022] [Indexed: 05/23/2023]
Abstract
The development of programmable biomaterials for use in nanofabrication represents a major advance for the future of biomedicine and diagnostics. Recent advances in structural nanotechnology using nucleic acids have resulted in dramatic progress in our understanding of nucleic acid-based nanostructures (NANs) for use in biological applications. As the NANs become more architecturally and functionally diverse to accommodate introduction into living systems, there is a need to understand how critical design features can be controlled to impart desired performance in vivo. In this review, we survey the range of nucleic acid materials utilized as structural building blocks (DNA, RNA, and xenonucleic acids), the diversity of geometries for nanofabrication, and the strategies to functionalize these complexes. We include an assessment of the available and emerging characterization tools used to evaluate the physical, mechanical, physiochemical, and biological properties of NANs in vitro. Finally, the current understanding of the obstacles encountered along the in vivo journey is contextualized to demonstrate how morphological features of NANs influence their biological fates. We envision that this summary will aid researchers in the designing novel NAN morphologies, guide characterization efforts, and design of experiments and spark interdisciplinary collaborations to fuel advancements in programmable platforms for biological applications.
Collapse
Affiliation(s)
- Nicole I. Langlois
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Kristine Y. Ma
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
40
|
Zhou XM, Zhuo Y, Yuan R, Chai YQ. Target-mediated self-assembly of DNA networks for sensitive detection and intracellular imaging of APE1 in living cells. Chem Sci 2023; 14:2318-2324. [PMID: 36873854 PMCID: PMC9977452 DOI: 10.1039/d2sc06968g] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Herein, giant DNA networks were assembled from two kinds of functionalized tetrahedral DNA nanostructures (f-TDNs) for sensitive detection and intracellular imaging of apurinic/apyrimidinic endonuclease 1 (APE1) as well as gene therapy in tumor cells. Impressively, the reaction rate of the catalytic hairpin assembly (CHA) reaction on f-TDNs was much faster than that of the conventional free CHA reaction owing to the high local concentration of hairpins, spatial confinement effect and production of giant DNA networks, which significantly enhanced the fluorescence signal to achieve sensitive detection of APE1 with a limit of 3.34 × 10-8 U μL-1. More importantly, the aptamer Sgc8 assembled on f-TDNs could enhance the targeting activity of the DNA structure to tumor cells, allowing it to endocytose into cells without any transfection reagents, which could achieve selective imaging of intracellular APE1 in living cells. Meanwhile, the siRNA carried by f-TDN1 could be accurately released to promote tumor cell apoptosis in the presence of endogenous target APE1, realizing effective and precise tumor therapy. Benefiting from the high specificity and sensitivity, the developed DNA nanostructures provide an excellent nanoplatform for precise cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Xue-Mei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China
| |
Collapse
|
41
|
Wang J, Wang K, Peng H, Zhang Z, Yang Z, Song M, Jiang G. Entropy-Driven Three-Dimensional DNA Nanofireworks for Simultaneous Real-Time Imaging of Telomerase and MicroRNA in Living Cells. Anal Chem 2023; 95:4138-4146. [PMID: 36790864 DOI: 10.1021/acs.analchem.2c05200] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Real-time monitoring of different types of intracellular tumor-related biomarkers is of key importance for the identification of tumor cells. However, it is hampered by the low abundance of biomarkers, inefficient free diffusion of reactants, and complex cytoplasmic milieu. Herein, we present a stable and general method for in situ imaging of microRNA-21 and telomerase utilizing simple highly integrated dual tetrahedral DNA nanostructures (TDNs) that can naturally enter cells, which could initiate to form the three-dimensional (3D) higher-order DNA superstructures (DNA nanofireworks, DNFs) through a reliable target-triggered entropy-driven strand displacement reaction in living cells for remarkable signal amplification. Importantly, the excellent biostability, biocompatibility, and sensitivity of this approach benefited from (i) the precise multidirectional arrangement of probes with a pure DNA structure and (ii) the local target concentration enhanced by the spatially confined microdomain inside the DNFs. This strategy provides a pivotal molecular toolbox for broad applications such as biomedical imaging and early precise cancer diagnosis.
Collapse
Affiliation(s)
- Jin Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaixuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.,School of Water, Energy, and Environment, Cranfield University, Cranfield, Milton Keynes MK43 0AL, U.K
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhugen Yang
- School of Water, Energy, and Environment, Cranfield University, Cranfield, Milton Keynes MK43 0AL, U.K
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
42
|
Kim H, Kwak M. Structures and Applications of Nucleic Acid-Based Micelles for Cancer Therapy. Int J Mol Sci 2023; 24:1592. [PMID: 36675110 PMCID: PMC9861421 DOI: 10.3390/ijms24021592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Nucleic acids have become important building blocks in nanotechnology over the last 30 years. DNA and RNA can sequentially build specific nanostructures, resulting in versatile drug delivery systems. Self-assembling amphiphilic nucleic acids, composed of hydrophilic and hydrophobic segments to form micelle structures, have the potential for cancer therapeutics due to their ability to encapsulate hydrophobic agents into their core and position functional groups on the surface. Moreover, DNA or RNA within bio-compatible micelles can function as drugs by themselves. This review introduces and discusses nucleic acid-based spherical micelles from diverse amphiphilic nucleic acids and their applications in cancer therapy.
Collapse
Affiliation(s)
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
43
|
Fan Z, Zhao X, Dong Y, Zhou J, Li Y, Wang J, Qi Y, Tan C, Yu H, Li J. Protein-free, ultrasensitive miRNA analysis based on an entropy-driven catalytic reaction switched on a smart-responsive DNAzyme dual-walker amplification strategy. Int J Biol Macromol 2022; 223:931-938. [PMID: 36372107 DOI: 10.1016/j.ijbiomac.2022.11.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs), useful biomarkers for cancer diagnosis, play an important role in tumorigenesis and progression, but many of the current analysis methods can suffer from excessive protease dependence, being time-consuming and unsatisfactory performance. Therefore, a reliable sensing strategy for the protein-free, ultrasensitive analysis of tumor-associated miRNAs is desired. The proposed dual-walker biosensing strategy based on an entropy-driven catalytic (EDC) walker coupled with a smart-responsive DNAzyme walker was demonstrated for the dual-amplification detection of miRNA-21. Namely, the target miRNA-21 initiates the three-stranded substrate complex of the traditional EDC circuit to release the input trigger of the Dz walker, which recognizes the circular binding domain to restore the cleavage activity of the DzS-AuNP walker. The fluorescence signal continuously released from the AuNPs was recorded by a fluorescence reader for miRNA-21 sensing. The optimized dual-walker exhibited appreciable sensitivity with a detection limit of 70 fM, satisfactory flexibility, fine specificity and ideal stability for clinical serum sample assays. The proposed strategy may open a new avenue for the development of powerful DNA molecular tools for cancer diagnosis.
Collapse
Affiliation(s)
- Zhichao Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Zhou
- Department of Laboratory Medicine, Xingcheng Special Service Sanatorium of Strategic Support Force, Huludao 125100, China
| | - Yingxue Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junyi Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yuchen Qi
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Congcong Tan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hua Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
44
|
Zhan J, Liu Z, Liu R, Zhu JJ, Zhang J. Near-Infrared-Light-Mediated DNA-Logic Nanomachine for Bioorthogonal Cascade Imaging of Endogenous Interconnected MicroRNAs and Metal Ions. Anal Chem 2022; 94:16622-16631. [DOI: 10.1021/acs.analchem.2c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jiayin Zhan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
45
|
Zhou W, Liao L, Fan X, Yao J, Jiang B. Programmable bidirectional dynamic DNA nano-device for accurate and ultrasensitive fluorescent detection of trace MUC1 biomarker in serums. Anal Chim Acta 2022; 1238:340643. [DOI: 10.1016/j.aca.2022.340643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
|
46
|
Yu S, Chen S, Dang Y, Zhou Y, Zhu JJ. An Ultrasensitive Electrochemical Biosensor Integrated by Nicking Endonuclease-Assisted Primer Exchange Reaction Cascade Amplification and DNA Nanosphere-Mediated Electrochemical Signal-Enhanced System for MicroRNA Detection. Anal Chem 2022; 94:14349-14357. [PMID: 36191168 DOI: 10.1021/acs.analchem.2c03015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specific and sensitive microRNAs (miRNAs) detection is essential to early cancer diagnosis. The development of these technologies including functional nuclease-mediated target amplification and DNA nanotechnology possesses tremendous potential for the high-performance detection of miRNAs in the accurate diagnosis of disease. In this study, we have established an ultrasensitive electrochemical biosensor by combining nicking endonuclease-assisted primer exchange reaction (PER) cascade amplification with a DNA nanosphere (DNS)-mediated electrochemical signal-enhanced system for the detection of miRNA-21 (miR-21). The cascade amplification is initiated by a nicking endonuclease that can cleave specific DNA substrates and highly amplify translation of the target to single-stranded DNA fragments (sDNA). Then, the PER cascade is powered by strand-displacing polymerase and generates a large amount of nascent single-stranded connector DNA (cDNA) via sDNA triggering of the dumbbell probe (DP), thus achieving the cascade amplification of the target. Finally, the DNS loaded with plenty of electroactive substances can be captured on the electrode via cDNA for further enhancing the electrochemical signal and highly sensitive detection of miR-21. The proposed electrochemical biosensor exhibits a wide detection range of 1 aM to 0.1 nM and a low detection limit of 0.58 aM. The excellent selectivity allows the biosensor to discriminate miR-21 from other miRNAs, even the one base-mismatched sequence. Moreover, the practicability of the biosensor is investigated by analyzing miR-21 in human serum and cancer cell lysate. Therefore, our proposed nicking endonuclease-assisted PER cascade amplification strategy provides a powerful platform for the early detection of miRNA-related disease and molecular diagnosis.
Collapse
Affiliation(s)
- Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Siyu Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
47
|
|
48
|
Zhang Q, Zhao R, Li CC, Zhang Y, Tang C, Luo X, Ma F, Zhang CY. Construction of an Entropy-Driven Dumbbell-Type DNAzyme Assembly Circuit for Lighting Up Uracil-DNA Glycosylase in Living Cells. Anal Chem 2022; 94:13978-13986. [PMID: 36179339 DOI: 10.1021/acs.analchem.2c03223] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive monitoring of intracellular uracil-DNA glycosylase (UDG) in living cells is essential to understanding the DNA repair pathways and discovery of anticancer drugs. Herein, we demonstrate the construction of an entropy-driven dumbbell-type DNAzyme assembly circuit for lighting up UDG in living cells via the integration of entropy-driven DNA catalysis (EDC) with the DNAzyme biocatalyst. Target UDG excises the damaged uracil base, causing the breakage of detection probe and the release of trigger. The released trigger can initiate the downstream EDC reaction to form two catalytically active DNAzyme units. The resultant dual Mg2+-DNAzyme units serve as the signal transducers to cyclically cleave the fluorophore/quenched-modified reporters, generating an enhanced fluorescence signal. In contrast to the single-layered EDC method with a linear amplification, the proposed doublet EDC-DNAzyme strategy exhibits high signal gain and achieves a detection limit of 8.71 × 10-6 U/mL. Notably, this assay can be performed in one-step manner at room temperature without the requirement of strict temperature control and complicated reaction procedures, and it can further screen the UDG inhibitors, measure kinetic parameters, and discriminate cancer cells from normal cells. Moreover, this strategy can monitor intracellular UDG activity with improved signal gain, and it may be exploited for sensing and imaging of other types of DNA modifying enzymes with the integration of the corresponding detection substrate, providing a facile and robust approach for biological research studies and clinical diagnosis.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Ran Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chen-Chen Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chunying Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
49
|
John J, Joseph A, Kadavan LJ, Prabhu PS, Prabhu DJ, John F, George J. DNA Nanostructures in Pharmaceutical Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinju John
- Bioorganic Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Ajinsh Joseph
- Bioorganic Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Liya J. Kadavan
- Bioorganic Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Prathibha S. Prabhu
- Bioorganic Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Deepak J. Prabhu
- Maharajas College (Government Autonomous) Park Avenue Road, Opposite Subash Bose Park Ernakulam Kochi Kerala India 682011
| | - Franklin John
- Bioorganic Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Jinu George
- Bioorganic Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| |
Collapse
|
50
|
Gao P, Yin J, Wang M, Wei R, Pan W, Li N, Tang B. COF-DNA Bicolor Nanoprobes for Imaging Tumor-Associated mRNAs in Living Cells. Anal Chem 2022; 94:13293-13299. [DOI: 10.1021/acs.analchem.2c03658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jiaqi Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengzhen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|