1
|
O'Connell-Danes JG, Ngwenya BT, Morrison CA, Love JB. Challenges and Applications of Supramolecular Metalate Chemistry. Angew Chem Int Ed Engl 2024; 63:e202409834. [PMID: 39022891 DOI: 10.1002/anie.202409834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
While the supramolecular chemistry of simple anions is ubiquitous, the targeting and exploitation of their metal-containing relatives, the metalates, is less well understood. This mini review highlights the latest advances in this emergent area by discussing the supramolecular chemistry of metalates thematically, with a focus on the exploitation of metalates in a diversity of applications, including medical imaging and therapy, environmental remediation, molecular magnetism, catalysis, perovskite materials, and metal separations. The unifying features of these systems are identified with a view to allow the supramolecular chemist to target the unique material properties of the metalates, even in areas that are currently relatively immature.
Collapse
Affiliation(s)
| | - Bryne T Ngwenya
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
2
|
Siddique RG, McMurtrie JC, Clegg JK. Self-assembled Co(II) and Co(III) [M 2L 3] helicates and [M 4L 6] tetrahedra from an unsymmetrical quaterpyridine ligand. Dalton Trans 2024; 53:11237-11241. [PMID: 38916120 DOI: 10.1039/d4dt01565g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In order to bind guest molecules with exquisite selectivity, biological host molecules often employ low symmetry binding pockets. The majority of metallosupramolecular assemblies, however, rely on symmetrical ligands to form high-symmetry assemblies that enclosing similarly symmetrical cavities. Here we employ an unsymmetrical quaterpyridine ligand in combination with cobalt(II) to form a mixture of low-symmetry [M2L3] helicates and [M4L6] tetrahedra and their subsequent oxidation to Co(III)-containing assemblies.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, 4072, Australia.
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, SA, 5005, Australia
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, 4072, Australia.
| |
Collapse
|
3
|
Nielsen HH, Vilariño P, Rodríguez G, Trepard F, Roubeau O, Aromí G, Aguilà D. Self-assembly of a supramolecular spin-crossover tetrahedron. Dalton Trans 2024; 53:9792-9797. [PMID: 38787740 DOI: 10.1039/d4dt00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
A new mononuclear iron(II) SCO compound featuring H-bonding donor and acceptor units has been synthesized and exploited to produce a purely supramolecular switchable [Fe4] tetrahedron. Magnetic and crystallographic measurements evidence a singular magnetic behavior for each of the four Fe(II) centers of the generated architecture and underscore the potential of this strategy to develop novel SCO materials.
Collapse
Affiliation(s)
- Hannah H Nielsen
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | - Pol Vilariño
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Gemma Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Florian Trepard
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009, Zaragoza, Spain.
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology, University of Barcelona (IN2UB), 08007 Barcelona, Spain
| | - David Aguilà
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institute of Nanoscience and Nanotechnology, University of Barcelona (IN2UB), 08007 Barcelona, Spain
| |
Collapse
|
4
|
Yin F, Yang J, Zhou LP, Meng X, Tian CB, Sun QF. 54 K Spin Transition Temperature Shift in a Fe 6L 4 Octahedral Cage Induced by Optimal Fitted Multiple Guests. J Am Chem Soc 2024; 146:7811-7821. [PMID: 38452058 DOI: 10.1021/jacs.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Spin-crossover (SCO) coordination cages are at the forefront of research for their potential in crafting next-generation molecular devices. However, due to the scarcity of SCO hosts and their own limited cavities, the interplay between the SCO host and the multiple guests binding has remained elusive. In this contribution, we present a family of pseudo-octahedral coordination cages (M6L4, M = ZnII, CoII, FeII, and NiII) assembled from a tritopic tridentate ligand L with metal ions. The utilization of FeII ion leads to the successful creation of the Fe6L4-type SCO cage. Host-guest studies of these M6L4 cages reveal their capacity to encapsulate four adamantine-based guests. Notably, the spin transition temperature T1/2 of Fe6L4 is dependent on the multiple guests encapsulated. The inclusion of adamantine yields an unprecedented T1/2 shift of 54 K, a record shift in guest-mediated SCO coordination cages to date. This drastic shift is ascribed to the synergistic effect of multiple guests coupled with their optimal fit within the host. Through a straightforward thermodynamic cycle, the binding affinities of the high-spin (HS) and low-spin (LS) states are separated from their apparent binding constant. This result indicates that the LS state has a stronger binding affinity for the multiple guests than the HS state. Exploring the SCO thermodynamics of host-guest complexes allows us to examine the optimal fit of multiple guests to the host cavity. This study reveals that the T1/2 of the SCO host can be manipulated by the encapsulation of multiple guests, and the SCO cage is an ideal candidate for determining the multiple guest fit.
Collapse
Affiliation(s)
- Fan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Li Z, Zhang Z, Ma L, Wen H, Kang M, Li D, Zhang W, Luo S, Wang W, Zhang M, Wang D, Li H, Li X, Wang H. Combining Multiple Photosensitizer Modules into One Supramolecular System for Synergetic Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2024; 63:e202400049. [PMID: 38193338 DOI: 10.1002/anie.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
Photodynamic therapy (PDT), as an emerging cancer treatment, requires the development of highly desirable photosensitizers (PSs) with integrated functional groups to achieve enhanced therapeutic efficacy. Coordination-driven self-assembly (CDSA) would provide an alternative approach for combining multiple PSs synergistically. Here, we demonstrate a simple yet powerful strategy of combining conventional chromophores (tetraphenylethylene, porphyrin, or Zn-porphyrin) with pyridinium salt PSs together through condensation reactions, followed by CDSA to construct a series of novel metallo-supramolecular PSs (S1-S3). The generation of reactive oxygen species (ROS) is dramatically enhanced by the direct combination of two different PSs, and further reinforced in the subsequent ensembles. Among all the ensembles, S2 with two porphyrin cores shows the highest ROS generation efficiency, specific interactions with lysosome, and strong emission for probing cells. Moreover, the cellular and living experiments confirm that S2 has excellent PDT efficacy, biocompatibility, and biosafety. As such, this study will enable the development of more efficient PSs with potential clinical applications.
Collapse
Affiliation(s)
- Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Haifei Wen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Danxia Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenjing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Siqi Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, 518055, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Li W, Li X, Robeyns K, Wolff M, Kfoury J, Oláh J, Herchel R, Demeshko S, Meyer F, Garcia Y. Spin-state versatility in FeII4L 6 supramolecular cages with a pyridyl-hydrazone ligand scaffold modulated by solvents and counter anions. Dalton Trans 2024; 53:1449-1459. [PMID: 37909312 DOI: 10.1039/d3dt02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Discrete spin crossover (SCO) tetranuclear cages are a unique class of materials that have potential use in next-generation molecular recognition and sensing. In this work, two new edge-bridged SCO FeII4L6 (L = 2,7-bis(((E)-pyridin-2-ylmethylene)amino)benzo[lmn] [3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) supramolecular cages with different counter anions: ClO4- (2) and CF3SO3- (3) were constructed via subcomponent self-assembly to investigate both solvent and anion influences on their magnetic properties and compare them to cage 1 with a BF4- anion. Pyridyl-hydrazone bidentate ligand scaffolds were employed to replace the 'classical' imidazole/thiazolyl-imine coordination units to induce SCO behaviour in these cages. 2 and 3 were structurally characterized by single-crystal X-ray diffraction analysis and electrospray ionization time-of-flight mass spectrometry. Magnetic susceptibilities of 1-3 and 1-3·desolvated indicate that the solvents' presence is in favor of the low-spin (LS) state. While different counter anions in 1-3·desolvated affect the spin-state configurations of the four FeII metal centers. According to the 57Fe Mössbauer spectral analysis, the spin-state distributions in 1-3 at 80 K are [2 high-spin (HS)-2LS], [1HS-3LS] and [2HS-2LS], respectively and density functional theory calculations were employed to investigate the reasons. These findings provide insights to regulate the spin-state versatility of SCO FeII cage systems in the solid state.
Collapse
Affiliation(s)
- Weiyang Li
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
| | - Xiaochun Li
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
| | - Mariusz Wolff
- Institut für Chemische Katalyse, Fakultät für Chemie, Universität Wien, Währinger Strasse 38, 1090 Wien, Austria
| | - Joseph Kfoury
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Szent Gellért tér 4, Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Szent Gellért tér 4, Budapest, Hungary
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
7
|
Siddique RG, Whittaker JJ, Al-Fayaad HA, McMurtrie JC, Clegg JK. Remote stereocentres do not disrupt the stereochemical coupling in homochiral [M 2L 3] helicates and [M 4L 6] tetrahedra. Dalton Trans 2023; 52:13487-13491. [PMID: 37725064 DOI: 10.1039/d3dt02486e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Despite the use of achiral ligands, the vast majority of metallosupramolecular assemblies containing octahedral tris-bidentate metal centres show strong stereochemical communication between metal centres, generally resulting in homochiral assemblies even though they are statistically disfavoured. Here we show that when resolved stereocentres are attached to the central part of a quaterpyridine ligand, the stereochemical coupling from this centre is insufficient to disrupt the strong stereochemical communication between metal centres in both [M2L3] helicates and [M4L6] tetrahedra.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Jacob J Whittaker
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| |
Collapse
|
8
|
Hu X, Han M, Wang L, Shao L, Peeyush Y, Du J, Kelley SP, Dalgarno SJ, Atwood DA, Feng S, Atwood JL. A copper-seamed coordination nanocapsule as a semiconductor photocatalyst for molecular oxygen activation. Chem Sci 2023; 14:4532-4537. [PMID: 37152257 PMCID: PMC10155914 DOI: 10.1039/d3sc00318c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 05/09/2023] Open
Abstract
Here we report that a Cu2+-seamed coordination nanocapsule can serve as an efficient semiconductor photocatalyst for molecular oxygen activation. This capsule was constructed through a redox reaction facilitated self-assembly of cuprous bromide and C-pentyl-pyrogallol[4]arene. Photophysical and electrochemical studies revealed its strong visible-light absorption and photocurrent polarity switching effect. This novel molecular solid material is capable of activating molecular oxygen into reactive oxygen species under simulated sunlight irradiation. The oxygen activation process has been exploited for catalyzing aerobic oxidation reactions. The present work provides new insights into designing nonporous discrete metal-organic supramolecular assemblies for solar-driven molecular oxygen activation.
Collapse
Affiliation(s)
- Xiangquan Hu
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Meirong Han
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Leicheng Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| | - Li Shao
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Yadav Peeyush
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Jialei Du
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| | - Steven P Kelley
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - David A Atwood
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Sisi Feng
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Jerry L Atwood
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| |
Collapse
|
9
|
|
10
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
11
|
Chakraborty D, Saha R, Clegg JK, Mukherjee PS. Selective separation of planar and non-planar hydrocarbons using an aqueous Pd 6 interlocked cage. Chem Sci 2022; 13:11764-11771. [PMID: 36320911 PMCID: PMC9580621 DOI: 10.1039/d2sc04660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) find multiple applications ranging from fabric dyes to optoelectronic materials. Hydrogenation of PAHs is often employed for their purification or derivatization. However, separation of PAHs from their hydrogenated analogues is challenging because of their similar physical properties. An example of such is the separation of 9,10-dihydroanthracene from phenanthrene/anthracene which requires fractional distillation at high temperature (∼340 °C) to obtain pure anthracene/phenanthrene in coal industry. Herein we demonstrate a new approach for this separation at room temperature using a water-soluble interlocked cage (1) as extracting agent by host-guest chemistry. The cage was obtained by self-assembly of a triimidazole donor L·HNO3 with cis-[(tmeda)Pd(NO3)2] (M) [tmeda = N,N,N',N'-tetramethylethane-1,2-diamine]. 1 has a triply interlocked structure with an inner cavity capable of selectively binding planar aromatic guests.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
12
|
Siddique RG, Arachchige KSA, Al-Fayaad HA, McMurtrie JC, Clegg JK. Sterics and metal-ion radius control the self-assembly of [M 2L 3] helicates. Dalton Trans 2022; 51:12704-12708. [PMID: 35943089 DOI: 10.1039/d2dt02241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interplay of many factors influences the outcomes of self-assembly reactions. Using an acetylene-appended quaterpyridine ligand we show that both the size of the metal ion and the presence of steric repulsion between the acetylene groups result in the exclusive formation of [M2L3] helicates rather than a helicate/tetrahedron equilibrium.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| |
Collapse
|
13
|
O'Connell-Danes JG, Ngwenya BT, Morrison CA, Love JB. Selective separation of light rare-earth elements by supramolecular encapsulation and precipitation. Nat Commun 2022; 13:4497. [PMID: 35922415 PMCID: PMC9349306 DOI: 10.1038/s41467-022-32178-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Supramolecular chemical strategies for Rare Earth (RE) element separations are emerging which amplify the small changes in properties across the series to bias selectivity in extraction or precipitation. These advances are important as the REs are crucial to modern technologies yet their extraction, separation, and recycling using conventional techniques remain challenging. We report here a pre-organised triamidoarene platform which, under acidic, biphasic conditions, uniquely and selectively precipitates light RE nitratometalates as supramolecular capsules. The capsules exhibit both intra- and intermolecular hydrogen bonds that dictate selectivity, promote precipitation, and facilitate the straightforward release of the RE and recycling of the receptor. This work provides a self-assembly route to metal separations that exploits size and shape complementarity and has the potential to integrate into conventional processes due to its compatibility with acidic metal feed streams.
Collapse
Affiliation(s)
| | - Bryne T Ngwenya
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
14
|
Howlader P, Ahmed S, Mondal S, Zangrando E, Mukherjee PS. Conformation-Selective Self-Assembly of Pd 6 Trifacial Molecular Barrels Using a Tetrapyridyl Ligand. Inorg Chem 2022; 61:8121-8125. [PMID: 35559685 DOI: 10.1021/acs.inorgchem.2c01081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A conformationally flexible tetrapyridyl ligand L was assembled separately with three cis-blocked 90° PdII acceptors (M1, M2, and M3) containing different blocking diamines. Surprisingly, different conformations of the donor L were arrested by the acceptors depending on the nature of the blocking amine, leading to the formation of isomeric Pd6 barrels (B1, B2, and B3). B2 and B3 with larger windows have been used to encapsulate polyaromatic hydrocarbons.
Collapse
Affiliation(s)
- Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shakil Ahmed
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Surajit Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
O’Connor H, Tipping WJ, Vallejo J, Nichol GS, Faulds K, Graham D, Brechin EK, Lusby PJ. Utilizing Raman Spectroscopy as a Tool for Solid- and Solution-Phase Analysis of Metalloorganic Cage Host-Guest Complexes. Inorg Chem 2022; 62:1827-1832. [PMID: 35512336 PMCID: PMC9906719 DOI: 10.1021/acs.inorgchem.2c00873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The host-guest chemistry of coordination cages continues to promote significant interest, not least because confinement effects can be exploited for a range of applications, such as drug delivery, sensing, and catalysis. Often a fundamental analysis of noncovalent encapsulation is required to provide the necessary insight into the design of better functional systems. In this paper, we demonstrate the use of various techniques to probe the host-guest chemistry of a novel Pd2L4 cage, which we show is preorganized to selectively bind dicyanoarene guests with high affinity through hydrogen-bonding and other weak interactions. In addition, we exemplify the use of Raman spectroscopy as a tool for analyzing coordination cages, exploiting alkyne and nitrile reporter functional groups that are contained within the host and guest, respectively.
Collapse
Affiliation(s)
- Helen
M. O’Connor
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - William J. Tipping
- Pure
and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Julia Vallejo
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Gary S. Nichol
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Karen Faulds
- Pure
and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.
| | - Duncan Graham
- Pure
and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K.,
| | - Euan K. Brechin
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.,
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.,
| |
Collapse
|
16
|
Zhou S, Zhang Z, Bai D, Li J, Cui X, Xu ZJ, Tang Y, Tang X, Liu W. A Discrete 3d-4f Metallacage as an Efficient Catalytic Nanoreactor for a Three-Component Aza-Darzens Reaction. Inorg Chem 2022; 61:4009-4017. [PMID: 35188386 DOI: 10.1021/acs.inorgchem.1c03729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exploration and development of coordination nanocages can provide an approach to control chemical reactions beyond the bounds of the flask, which has aroused great interest due to their significant applications in the field of molecular recognition, supramolecular catalysis, and molecular self-assembly. Herein, we take the advantage of a semirigid and nonsymmetric bridging ligand (H5L) with rich metal-chelating sites to construct an unusual and discrete 3d-4f metallacage, [Zn2Er4(H2L)4(NO3)Cl2(H2O)]·NO3·xCH3OH·yH2O (Zn2Er4). The 3d-4f Zn2Er4 cage possesses a quadruple-stranded structure, and all of the ligands wrap around an open spherical cavity within the core. The self-assembly of the unique cage not only ensures the structural stability of the Zn2Er4 cage as a nanoreactor in solution but also makes the bimetallic lanthanide cluster units active sites that are exposed in the medium-sized cavity. It is important to note that the Zn2Er4 cage as a homogeneous catalyst has been successfully applied to catalyze three-component aza-Darzens reactions of formaldehyde, anilines, and α-diazo esters without another additive under mild conditions, displaying better catalytic activity, higher specificity, short reaction time, and low catalyst loadings. A possible mechanism for this three-component aza-Darzens reaction catalyzed by the Zn2Er4 cage has been proposed. These experimental results have demonstrated the great potential of the discrete 3d-4f metallacage as a host nanoreactor for the development of supramolecular or molecular catalysis.
Collapse
Affiliation(s)
- Shengbin Zhou
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhichao Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dongjie Bai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jingzhe Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiang Cui
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, People's Republic of China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yu Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaoliang Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
17
|
Brechin EK, Singh M, Etcheverry-Berríos A, Vallejo J, Sanz S, Martínez-Lillo J, Nichol GS, Lusby P. Guest-induced magnetic exchange in paramagnetic [M 2L 4] 4+ coordination cages. Dalton Trans 2022; 51:8377-8381. [DOI: 10.1039/d2dt01385a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramagnetic complexes that show magnetically switchable properties show promise in a number of applications. A significantly underdeveloped approach is the use of metallocages, whose magnetic properties can be modulated through...
Collapse
|
18
|
Huang B, Mao L, Shi X, Yang HB. Recent advances and perspectives on supramolecular radical cages. Chem Sci 2021; 12:13648-13663. [PMID: 34760150 PMCID: PMC8549795 DOI: 10.1039/d1sc01618k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Supramolecular radical chemistry has been emerging as a cutting-edge interdisciplinary field of traditional supramolecular chemistry and radical chemistry in recent years. The purpose of such a fundamental research field is to combine traditional supramolecular chemistry and radical chemistry together, and take the benefit of both to eventually create new molecules and materials. Recently, supramolecular radical cages have been becoming one of the most frontier and challenging research focuses in the field of supramolecular chemistry. In this Perspective, we give a brief introduction to organic radical chemistry, supramolecular chemistry, and the emerging supramolecular radical chemistry along with their history and application. Subsequently, we turn to the main part of this topic: supramolecular radical cages. The design and synthesis of supramolecular cages consisting of redox-active building blocks and radical centres are summarized. The host-guest interactions between supramolecular (radical) cages and organic radicals are also surveyed. Some interesting properties and applications of supramolecular radical cages such as their unique spin-spin interactions and intriguing confinement effects in radical-mediated/catalyzed reactions are comprehensively discussed and highlighted in the main text. The purpose of this Perspective is to help students and researchers understand the development of supramolecular radical cages, and potentially to stimulate innovation and creativity and infuse new energy into the fields of traditional supramolecular chemistry and radical chemistry as well as supramolecular radical chemistry.
Collapse
Affiliation(s)
- Bin Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Lijun Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| |
Collapse
|
19
|
Kuzniak-Glanowska E, Kobylarczyk J, Jedrzejowska K, Glosz D, Podgajny R. Exploring the structure-property schemes in anion-π systems of d-block metalates. Dalton Trans 2021; 50:10999-11015. [PMID: 34296241 DOI: 10.1039/d1dt01713f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion-π based compounds, materials, and processes have gained significant interest due to the diversity of their aesthetic non-covalent synthons, and thanks to their significance in biological systems, catalytic processes, anion binding and sensing, or the supramolecular organization of hierarchical architectures. While systems based on typical inorganic anions or organic residues have been widely reviewed in recent years, those involving anionic d metal comlexes as the main components have been treated with a rather secondary interest. However, actively exploring the new systems of the latter type we have recognized systematic advances in the field. As a result, in the current review we describe the landscape that has recently emerged. Focusing on the established groups of π-acidic species, i.e. polycarbonitirles, polyazines, polyazine N-oxides, diimide derivatives, fluoroarenes, and nitroarenes, we explore and discuss anion-π crystal engineering together with the structure-property schemes important from the standpoint of charge transfer (CT) and electron transfer (ET), magnetism, luminescence, reactivity and catalysis, and the construction of core-shell crystalline composites.
Collapse
|
20
|
Siddique RG, Arachchige KSA, Al-Fayaad HA, Brock AJ, Micallef AS, Luis ET, Thoburn JD, McMurtrie JC, Clegg JK. The kinetics and mechanism of interconversion within a system of [Fe 2L 3] 4+ helicates and [Fe 4L 6] 8+ cages. Chem Commun (Camb) 2021; 57:4918-4921. [PMID: 33870998 DOI: 10.1039/d1cc01583d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nature builds simple molecules into highly complex assemblies, which are involved in all fundamental processes of life. Some of the most intriguing biological assemblies are those that can be precisely reconfigured to achieve different functions using the same building blocks. Understanding the reconfiguration of synthetic self-assembled systems will allow us to better understand the complexity of proteins and design useful artificial chemical systems. Here we have prepared a relatively simple system in which two distinct self-assembled structures, a [Fe2L3]4+ helicate and a [Fe4L6]8+ cage that are formed from the same precursors, coexist at equilibrium. We have measured the rates of interconversion of these two species and propose a mechanism for the transformation.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, Qld, 4072, Australia.
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, Qld, 4072, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, Qld, 4072, Australia.
| | - Aidan J Brock
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Aaron S Micallef
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Ena T Luis
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - John D Thoburn
- Department of Chemistry, Randolph-Macon College, Ashland, VA 23005, USA
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, Qld, 4072, Australia.
| |
Collapse
|