1
|
Appleton JL, Le Breton N, Choua S, Ruppert R, Boudalis AK. Nutation Spectroscopy of a Weakly Interacting Heterobimetallic Spin System. Chemistry 2025; 31:e202403521. [PMID: 39558665 PMCID: PMC11739824 DOI: 10.1002/chem.202403521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
The use of VIV and CuII spins to design weakly coupled and dissymmetric spin systems has been examined. Such systems were synthesized using porphyrin-based complexes, with external coordination sites allowing for the formation of dimers via a PdII linker ion. Continuous-wave (CW) Electron Paramagnetic Resonance (EPR) spectroscopy allowed the unequivocal magnetic characterization of the mononuclear precursors VO and Cu. The porphyrin dimer (VO)PdCu presented a broad and overlapped spectrum that was more pronounced than for the previously reported (VO)Pd(VO), hinting at the effect of weak interspin interactions between dissimilar spins. Pulsed EPR experiments on VO, (VO)Pd(VO) and (VO)PdCu samples diluted in a diamagnetic matrix confirmed that this complication is also present in the Field-Swept Echo-Detected (FSED) spectra of the heterometallic (VO)PdCu system. Despite the strongly overlapped field-swept spectra, spin nutation experiments revealed two distinct oscillations in the case of (VO)PdCu, which are assigned to transitions with different spin characters. Remarkably, coherence is retained above liquid nitrogen temperatures for all complexes, in particular up to 295 K for VO and (VO)Pd(VO) and 150 K for (VO)PdCu.
Collapse
Affiliation(s)
- Jordan L Appleton
- Institut de Chimie, UMR 7177 (CNRS-Université de Strasbourg), 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Nolwenn Le Breton
- Institut de Chimie, UMR 7177 (CNRS-Université de Strasbourg), 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Sylvie Choua
- Institut de Chimie, UMR 7177 (CNRS-Université de Strasbourg), 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Romain Ruppert
- Institut de Chimie, UMR 7177 (CNRS-Université de Strasbourg), 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Athanassios K Boudalis
- Institut de Chimie, UMR 7177 (CNRS-Université de Strasbourg), 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
2
|
Privitera A, Chiesa A, Santanni F, Carella A, Ranieri D, Caneschi A, Krzyaniak MD, Young RM, Wasielewski MR, Carretta S, Sessoli R. Room-Temperature Optical Spin Polarization of an Electron Spin Qudit in a Vanadyl-Free Base Porphyrin Dimer. J Am Chem Soc 2025; 147:331-341. [PMID: 39681297 PMCID: PMC11726572 DOI: 10.1021/jacs.4c10632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Photoexcited organic chromophores appended to molecular qubits can serve as a source of spin initialization or multilevel qudit generation for quantum information applications. So far, this approach has been primarily investigated in chromophore-stable radical systems. Here, we extend this concept to a meso-meso linked oxovanadium(IV) porphyrin-free-base porphyrin dimer. Femtosecond transient absorption experiments reveal that photoexcitation of the free-base porphyrin leads to picosecond triplet state formation via enhanced intersystem crossing. Time-resolved electron paramagnetic resonance (TREPR) experiments carried out at both 85 K and room temperature reveal the formation of a long-lived spin-polarized quartet state through triplet-doublet spin mixing. Notably, a distinct hyperfine structure arising from the interaction between the electron spin quartet state and the vanadyl nucleus (51V, I = 7/2) is evident, with the quartet state showing long-lived spin polarization even at room temperature. Theoretical simulations of the TREPR spectra confirm the photogenerated quartet state and provide insights into the non-Boltzmann spin populations. Exploiting this phenomenon affords the possibility of using photoinduced triplet states in porphyrins for quantum information as a resource to polarize and magnetically couple molecular electronic or nuclear spin qubits and qudits.
Collapse
Affiliation(s)
- Alberto Privitera
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department
of Industrial Engineering, University of
Florence & UdR INSTM Firenze, 50139 Firenze, Italy
| | - Alessandro Chiesa
- Department
of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM Parma, 43124 Parma, Italy
- INFN-Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
| | - Fabio Santanni
- Department
of Chemistry “U. Schiff”, University of Florence & UdR INSTM Firenze, 50019 Sesto Fiorentino, Italy
| | - Angelo Carella
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
- Department
of Chemical Sciences, University of Padova, 35134 Padua, Italy
| | - Davide Ranieri
- Department
of Chemistry “U. Schiff”, University of Florence & UdR INSTM Firenze, 50019 Sesto Fiorentino, Italy
| | - Andrea Caneschi
- Department
of Industrial Engineering, University of
Florence & UdR INSTM Firenze, 50139 Firenze, Italy
| | - Matthew D. Krzyaniak
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M. Young
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Paula
M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Stefano Carretta
- Department
of Mathematical, Physical and Computer Sciences, University of Parma & UdR INSTM Parma, 43124 Parma, Italy
- INFN-Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
| | - Roberta Sessoli
- Department
of Chemistry “U. Schiff”, University of Florence & UdR INSTM Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Repollés A, Pallarés MC, Aguilà D, Roubeau O, Velasco V, Gella D, Barrios LA, Martínez-Pérez MJ, Sesé J, Drung D, Martínez JI, Schurig T, Le Guennic B, Lostao A, Aromí G, Luis F. Asymmetric [Dy2] molecules deposited into micro-SQUID susceptometers: in situ characterization of their magnetic integrity. NANOSCALE 2024; 17:219-229. [PMID: 39498526 DOI: 10.1039/d4nr03484h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The controlled integration of magnetic molecules into superconducting circuits is key to developing hybrid quantum devices. Herein, we study [Dy2] molecular dimers deposited into micro-SQUID susceptometers. The results of magnetic, heat capacity and magnetic resonance experiments, backed by theoretical calculations, show that each [Dy2] dimer fulfills the main requisites to encode a two-spin quantum processor. Arrays of between 2 × 108 and 7 × 109[Dy2] molecules were optimally integrated under ambient conditions inside the 20 μm wide loops of micro-SQUID sensors by means of dip-pen nanolithography. Equilibrium magnetic susceptibility and phonon-assisted spin tunneling dynamics measured in situ substantiate that these molecules preserve spin ground states, magnetic interactions and magnetic asymmetry that characterize them in bulk. These results show that it is possible to interface multi-qubit molecular complexes with on-chip superconducting circuits without disturbing their relevant properties and suggest the potential of soft nanolithography techniques to achieve this goal.
Collapse
Affiliation(s)
- Ana Repollés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain.
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - David Aguilà
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain.
| | - Verónica Velasco
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Diego Gella
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain.
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - María José Martínez-Pérez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain.
| | - Javier Sesé
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain.
| | - Dietmar Drung
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, D-10587 Berlin, Germany
| | - Jesús Ignacio Martínez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain.
| | - Thomas Schurig
- Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, D-10587 Berlin, Germany
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
- Institut of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain
| | - Fernando Luis
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza, Plaza San Francisco s/n, 50009 Zaragoza, Spain.
| |
Collapse
|
4
|
Mezzadri M, Chiesa A, Lepori L, Carretta S. Fault-tolerant computing with single-qudit encoding in a molecular spin. MATERIALS HORIZONS 2024; 11:4961-4969. [PMID: 39051507 DOI: 10.1039/d4mh00454j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We show that molecular spins represent ideal materials to realize a fault-tolerant quantum computer, in which all quantum operations include protection against leading (dephasing) errors. This is achieved by pursuing a qudit approach, in which logical error-corrected qubits are encoded in a single multi-level molecule (a qudit) and not in a large collection of two-level systems, as in standard codes. By preventing such an explosion of resources, this emerging way of thinking about quantum error correction makes its actual implementation using molecular spins much closer. We show how to perform all quantum computing operations (logical gates, corrections and measurements) without propagating errors. We achieve a quasi-exponential error correction with only linear qudit size growth, i.e. a higher efficiency than the standard approach based on stabilizer codes and concatenation.
Collapse
Affiliation(s)
- Matteo Mezzadri
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
| | - Alessandro Chiesa
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - Luca Lepori
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
| | - Stefano Carretta
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy.
- Gruppo Collegato di Parma, INFN-Sezione Milano-Bicocca, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
5
|
Raza A, Chelazzi L, Ciattini S, Sorace L, Perfetti M. Osmium(III) Acetylacetonate and Its Missing Polymorph: A Magnetic and Structural Investigation. Inorg Chem 2024; 63:17198-17207. [PMID: 39092922 DOI: 10.1021/acs.inorgchem.4c01672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Despite the potential for their application, the magnetic behavior of complexes containing 4d and 5d metal ions is underexplored, evidencing the need for benchmark multi-technique studies on simple molecules. We report here a structural and magnetic study on osmium(III) acetylacetonate [Os(acac)3]. X-ray single crystal diffraction did not allow us to determine the structure of the β-polymorph of [Os(acac)3]. The combined magnetic (dc magnetic measurements on powder and cantilever torque magnetometry on single crystal) and spectroscopic (electron paramagnetic resonance, EPR) characterization is here used to provide further evidence that its structure is indeed the one of the orthorhombic "missing polymorph", analogous to the ruthenium(III) derivative. Our study shows that all acetylacetonate complexes of the eighth group of the periodic table show dimorphism and are isomorphic. The EPR characterization allowed the experimental assessment of the easy axis nature of the ground doublet and the determination of the first hyperfine coupling in an osmium complex. Torque magnetometry, applied here for the first time on an osmium-based molecule, determined the orientation of the easy axis along the pseudo C3 axis of the complex. Ac magnetometric measurements revealed in-field slow relaxation of the magnetization further slowed by the suppression of dipolar fields via magnetic dilution in the isostructural gallium(III) analogue.
Collapse
Affiliation(s)
- Arsen Raza
- Department of Chemistry "Ugo Schiff", DICUS and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
- Department of Industrial Engineering, DIEF and INSTM Research Unit, University of Florence, Via Santa Marta 3, 50139 Florence, Italy
| | - Laura Chelazzi
- Centro di Servizi di Cristallografia Strutturale, CRIST, Via della Lastruccia, 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Samuele Ciattini
- Centro di Servizi di Cristallografia Strutturale, CRIST, Via della Lastruccia, 13, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorenzo Sorace
- Department of Chemistry "Ugo Schiff", DICUS and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Mauro Perfetti
- Department of Chemistry "Ugo Schiff", DICUS and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Laorenza DW, Mullin KR, Weiss LR, Bayliss SL, Deb P, Awschalom DD, Rondinelli JM, Freedman DE. Coherent spin-control of S = 1 vanadium and molybdenum complexes. Chem Sci 2024:d4sc03107e. [PMID: 39144462 PMCID: PMC11318652 DOI: 10.1039/d4sc03107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
The burgeoning field of quantum sensing hinges on the creation and control of quantum bits. To date, the most well-studied quantum sensors are optically active, paramagnetic defects residing in crystalline hosts. We previously developed analogous optically addressable molecules featuring a ground-state spin-triplet centered on a Cr4+ ion with an optical-spin interface. In this work, we evaluate isovalent V3+ and Mo4+ congeners, which offer unique advantages, such as an intrinsic nuclear spin for V3+ or larger spin-orbit coupling for Mo4+, as optically addressable spin systems. We assess the ground-state spin structure and dynamics for each complex, illustrating that all of these spin-triplet species can be coherently controlled. However, unlike the Cr4+ derivatives, these pseudo-tetrahedral V3+ and Mo4+ complexes exhibit no measurable emission. Coupling absorption spectroscopy with computational predictions, we investigate why these complexes exhibit no detectable photoluminescence. These cumulative results suggest that design of future V3+ complexes should target pseudo-tetrahedral symmetries using bidentate or tridentate ligand scaffolds, ideally with deuterated or fluorinated ligand environments. We also suggest that spin-triplet Mo4+, and by extension W4+, complexes may not be suitable candidate optically addressable qubit systems due to their low energy spin-singlet states. By understanding the failures and successes of these systems, we outline additional design features for optically addressable V- or Mo-based molecules to expand the library of tailor-made quantum sensors.
Collapse
Affiliation(s)
- Daniel W Laorenza
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Kathleen R Mullin
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Leah R Weiss
- Pritzker School of Molecular Engineering, University of Chicago Chicago Illinois 60637 USA
- Advanced Institute for Materials Research (AIMR-WPI), Tohoku University Sendai 980-8577 Japan
| | - Sam L Bayliss
- Pritzker School of Molecular Engineering, University of Chicago Chicago Illinois 60637 USA
- James Watt School of Engineering, University of Glasgow Glasgow G12 8QQ UK
| | - Pratiti Deb
- Pritzker School of Molecular Engineering, University of Chicago Chicago Illinois 60637 USA
- Department of Physics, University of Chicago Chicago Illinois 60637 USA
| | - David D Awschalom
- Pritzker School of Molecular Engineering, University of Chicago Chicago Illinois 60637 USA
- Department of Physics, University of Chicago Chicago Illinois 60637 USA
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory Lemont Illinois 60439 USA
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University Evanston Illinois 60208 USA
| | - Danna E Freedman
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| |
Collapse
|
7
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Kirk ML, Shultz DA, Marri AR, van der Est A. Photoinduced Magnetic Exchange-Jump Promotes Ground State Biradical Electron Spin Polarization. J Am Chem Soc 2024; 146:9285-9292. [PMID: 38518125 DOI: 10.1021/jacs.4c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Photoinduced electron spin polarization (ESP) is reported in the electronic ground states of three Pt(II) complexes comprised of two S = 1/2 nitronyl nitroxide (NN) radicals attached through different length para-phenylethynyl bridges to the 3,6 positions of a catecholate (CAT, donor) and 4,4'-di-tert-butyl-2,2'-bipyridine (bpy, acceptor). Complexes 1-3 have from 17 to 41 bonds separating NN radicals and display cw-EPR spectra consistent with |JNN-NN| ≫ |aN|, |JNN-NN| ≥ |aN|, and |JNN-NN| < |aN|, respectively, where JNN-NN is the magnetic exchange coupling between NN radicals in the electronic ground state, and aN is the isotropic 14N hyperfine coupling constant. Light-induced transient EPR spectra characterized as enhanced ground-state absorption were observed for all three complexes using 532 nm pulsed laser excitation into the ligand-to-ligand charge transfer (LL'CT) band of the (CAT)Pt(bpy) chromophore. The magnitude of the observed ESP increases in the order 1 < 2 < 3 and is inversely correlated with the magnitude of ground-state JNN-NN. In addition to the experimental observation of net absorptive polarization in 1-3, light excitation also produces multiplet polarization in 2. Since the weak dipolar coupling leads to a strong spectral overlap of the absorptive and emissive components, the multiplet polarization is not observed in 1 and 3 and is very weak in 2. The ability to spin-polarize multiple radical spins with a single photon is anticipated to advance new photoinduced multi qubit/qudit ESP protocols for quantum information science applications.
Collapse
Affiliation(s)
- Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
- The Center for High Technology Materials, The University of New Mexico, Albuquerque, New Mexico 87106, United States
- Center for Quantum Information and Control (CQuIC), The University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
- Center for Computational Chemistry, The University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Anil Reddy Marri
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Art van der Est
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
9
|
Chiesa A, Santini P, Garlatti E, Luis F, Carretta S. Molecular nanomagnets: a viable path toward quantum information processing? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:034501. [PMID: 38314645 DOI: 10.1088/1361-6633/ad1f81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Molecular nanomagnets (MNMs), molecules containing interacting spins, have been a playground for quantum mechanics. They are characterized by many accessible low-energy levels that can be exploited to store and process quantum information. This naturally opens the possibility of using them as qudits, thus enlarging the tools of quantum logic with respect to qubit-based architectures. These additional degrees of freedom recently prompted the proposal for encoding qubits with embedded quantum error correction (QEC) in single molecules. QEC is the holy grail of quantum computing and this qudit approach could circumvent the large overhead of physical qubits typical of standard multi-qubit codes. Another important strength of the molecular approach is the extremely high degree of control achieved in preparing complex supramolecular structures where individual qudits are linked preserving their individual properties and coherence. This is particularly relevant for building quantum simulators, controllable systems able to mimic the dynamics of other quantum objects. The use of MNMs for quantum information processing is a rapidly evolving field which still requires to be fully experimentally explored. The key issues to be settled are related to scaling up the number of qudits/qubits and their individual addressing. Several promising possibilities are being intensively explored, ranging from the use of single-molecule transistors or superconducting devices to optical readout techniques. Moreover, new tools from chemistry could be also at hand, like the chiral-induced spin selectivity. In this paper, we will review the present status of this interdisciplinary research field, discuss the open challenges and envisioned solution paths which could finally unleash the very large potential of molecular spins for quantum technologies.
Collapse
Affiliation(s)
- A Chiesa
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - P Santini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - E Garlatti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - F Luis
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC, Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Fısica de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
| | - S Carretta
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, Gruppo Collegato di Parma, 43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
10
|
Imperato M, Nicolini A, Borsari M, Briganti M, Chiesa M, Liao YK, Ranieri A, Raza A, Salvadori E, Sorace L, Cornia A. Quantum spin coherence and electron spin distribution channels in vanadyl-containing lantern complexes. Inorg Chem Front 2023; 11:186-195. [PMID: 38221947 PMCID: PMC10782212 DOI: 10.1039/d3qi01806g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/02/2023] [Indexed: 01/16/2024]
Abstract
We herein investigate the heterobimetallic lantern complexes [PtVO(SOCR)4] as charge neutral electronic qubits based on vanadyl complexes (S = 1/2) with nuclear spin-free donor atoms. The derivatives with R = Me (1) and Ph (2) give highly resolved X-band EPR spectra in frozen CH2Cl2/toluene solution, which evidence the usual hyperfine coupling with the 51V nucleus (I = 7/2) and an additional superhyperfine interaction with the I = 1/2 nucleus of the 195Pt isotope (natural abundance ca. 34%). DFT calculations ascribe the spin density delocalization on the Pt2+ ion to a combination of π and δ pathways, with the former representing the predominant channel. Spin relaxation measurements in frozen CD2Cl2/toluene-d8 solution between 90 and 10 K yield Tm values (1-6 μs in 1 and 2-11 μs in 2) which compare favorably with those of known vanadyl-based qubits in similar matrices. Coherent spin manipulations indeed prove possible at 70 K, as shown by the observation of Rabi oscillations in nutation experiments. The results indicate that the heavy Group 10 metal ion is not detrimental to the coherence properties of the vanadyl moiety and that Pt-VO lanterns can be used as robust spin-coherent building blocks in materials science and quantum technologies.
Collapse
Affiliation(s)
- Manuel Imperato
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia via G. Campi 103 41125 Modena Italy
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia via G. Campi 213/A 41125 Modena Italy
| | - Alessio Nicolini
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia via G. Campi 103 41125 Modena Italy
| | - Marco Borsari
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia via G. Campi 103 41125 Modena Italy
| | - Matteo Briganti
- Dipartimento di Chimica "Ugo Schiff" e UdR INSTM, Università degli Studi di Firenze via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Mario Chiesa
- Dipartimento di Chimica e NIS Centre, Università degli Studi di Torino via P. Giuria 7 10125 Torino Italy
| | - Yu-Kai Liao
- Dipartimento di Chimica e NIS Centre, Università degli Studi di Torino via P. Giuria 7 10125 Torino Italy
| | - Antonio Ranieri
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia via G. Campi 103 41125 Modena Italy
| | - Arsen Raza
- Dipartimento di Chimica "Ugo Schiff" e UdR INSTM, Università degli Studi di Firenze via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Enrico Salvadori
- Dipartimento di Chimica e NIS Centre, Università degli Studi di Torino via P. Giuria 7 10125 Torino Italy
| | - Lorenzo Sorace
- Dipartimento di Chimica "Ugo Schiff" e UdR INSTM, Università degli Studi di Firenze via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Andrea Cornia
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia via G. Campi 103 41125 Modena Italy
| |
Collapse
|
11
|
Miyashita S, Barbara B. How to Cross an Energy Barrier at Zero Kelvin without Tunneling Effect. PHYSICAL REVIEW LETTERS 2023; 131:066701. [PMID: 37625045 DOI: 10.1103/physrevlett.131.066701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 08/27/2023]
Abstract
This Letter deals with the broad class of magnetic systems having a single or collective spin S with an energy barrier, such as rare-earth elements and their compounds, single molecule magnets with uniaxial anisotropy, and more generally any other anisotropic quantum system made of single or multiple objects with discrete energy levels. Till now, the reversal of the magnetization of such systems at zero kelvin required making use of quantum tunneling with a significant transverse field or transverse anisotropy term, at resonance. Here, we show that another very simple method exists. It simply consists in the application of a particular sequence of electromagnetic radiations in the ranges of optical or microwave frequencies, depending on the characteristics of the system (spin and anisotropy values for magnetic systems). This produces oscillations of the Rabi type that pass above the barrier, thus extending these oscillations between the two energy wells with mixtures of all the 2S+1 states. In addition to its basic character, this approach opens up new directions of research in quantum information with possible breakthroughs in the current use of multiple quantum bits.
Collapse
Affiliation(s)
- Seiji Miyashita
- Department of Physics, The University of Tokyo, 113-0033, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- The Physical Society of Japan, 2-31-22 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Bernard Barbara
- Institut Néel CNRS/UGA, UPR2940 25 Avenue des Martyrs BP 166, 38042 Grenoble Cedex 9, France
| |
Collapse
|
12
|
Martinez R, Jackson CE, Üngör Ö, van Tol J, Zadrozny JM. Impact of ligand chlorination and counterion tuning on high-field spin relaxation in a series of V(IV) complexes. Dalton Trans 2023. [PMID: 37485670 DOI: 10.1039/d3dt01274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Methods of controlling spin coherence by molecular design are essential to efforts to develop molecular qubits for quantum information and sensing applications. In this manuscript, we perform the first studies of how arrangements of 35/37Cl nuclear spins in the ligand shell and counterion selection affect the coherent spin dynamics of V(IV) complexes at a high magnetic field. We prepared eight derivatives of the vanadium triscatecholate complex with varying arrangements of 35/37Cl substitution on the catechol backbone and R3NH+ counterions (R = Et, n-Bu, n-Hex) and investigated these species via structural and spectroscopic methods. Hahn-echo pulsed electron paramagnetic resonance (EPR) experiments at high-frequency (120 GHz) and field (ca. 4.4 T) were used to extract the phase-memory relaxation time (Tm) and spin-lattice relaxation (T1) times of the series of complexes. We found Tm values ranging from 4.8 to 1.1 μs in the temperature range of 5 to 40 K, varying by approximately 20% as a function of substitutional pattern. In-depth analysis of the results herein and comparison with related studies of brominated analogues disproves multiple hypothesized mechanisms for Tm control. Ultimately, we propose that more specific properties of the halogen atoms, e.g. the chemical shift, V⋯Cl hyperfine coupling, and quadrupolar coupling, could be contributing to the V(IV) Tm time.
Collapse
Affiliation(s)
- Roxanna Martinez
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Cassidy E Jackson
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Johan van Tol
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
13
|
Santanni F, Briganti M, Serrano G, Salvadori E, Veneri A, Batistoni C, Russi SF, Menichetti S, Mannini M, Chiesa M, Sorace L, Sessoli R. VdW Mediated Strong Magnetic Exchange Interactions in Chains of Hydrogen-Free Sublimable Molecular Qubits. JACS AU 2023; 3:1250-1262. [PMID: 37124308 PMCID: PMC10131211 DOI: 10.1021/jacsau.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Sulfur-rich molecular complexes of dithiolene-like ligands are appealing candidates as molecular spin qubits because spin coherence properties are enhanced in hydrogen-free environments. Herein, we employ the hydrogen-free mononegative 1,3,2-dithiazole-4-thione-5-thiolate (dttt-) ligand as an alternative to common dinegative dithiolate ligands. We report the first synthesis and structural characterization of its Cu2+, Ni2+, and Pt2+ neutral complexes. The XPS analysis of thermal deposition of [Cu(dttt)2] in UHV conditions indicates that films of intact molecules can be deposited on surfaces by sublimation. Thanks to a combined approach employing DC magnetometry and DFT calculations, we highlighted AF exchange interactions of 108 cm-1 and 36 cm-1 attributed to the two different polymorph phases. These couplings are exclusively mediated by S···S VdW interactions, which are facilitated by the absence of counterions and made particularly efficient by the diffuse electron density on S atoms. Furthermore, the spin dynamics of solid-state magnetically diluted samples was investigated. The longest observed T m is 2.3 μs at 30 K, which significantly diverges from the predicted T m > 100 μs. These results point to the diluting matrix severely affecting the coherence lifetime of Cu2+ species via different factors, such as the contributions of neighboring 14N nuclei and the formation of radical impurities in a non-completely controllable way. However, the ease of processing [Cu(dttt)2] via thermal sublimation can allow dispersion in matrices better suited for coherent spin manipulation of isolated molecules and the realization of AF-coupled VdW structures on surfaces.
Collapse
Affiliation(s)
- Fabio Santanni
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Matteo Briganti
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Giulia Serrano
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
- Dipartimento
di Ingegneria Industriale - DIEF, Università
degli Studi di Firenze, Via Santa Marta 3, I-50139 Firenze, Italy
| | - Enrico Salvadori
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
- Dipartimento
di Chimica e NIS Centre, Università
di Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - Alessandro Veneri
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Chiara Batistoni
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Sofia F. Russi
- Dipartimento
di Chimica e NIS Centre, Università
di Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - Stefano Menichetti
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Matteo Mannini
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Mario Chiesa
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
- Dipartimento
di Chimica e NIS Centre, Università
di Torino, Via P. Giuria 7, I-10125 Torino, Italy
| | - Lorenzo Sorace
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| | - Roberta Sessoli
- Dipartimento
di Chimica “Ugo Schiff” - DICUS, Università degli Studi di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Firenze, Italy
- Consorzio
Interuniversitario Nazionale di Scienza e Tecnologia dei Materiali
- INSTM, Via G. Giusti
9, I-50121 Firenze, Italy
| |
Collapse
|
14
|
Garlatti E, Albino A, Chicco S, Nguyen VHA, Santanni F, Paolasini L, Mazzoli C, Caciuffo R, Totti F, Santini P, Sessoli R, Lunghi A, Carretta S. The critical role of ultra-low-energy vibrations in the relaxation dynamics of molecular qubits. Nat Commun 2023; 14:1653. [PMID: 36964152 PMCID: PMC10039010 DOI: 10.1038/s41467-023-36852-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Improving the performance of molecular qubits is a fundamental milestone towards unleashing the power of molecular magnetism in the second quantum revolution. Taming spin relaxation and decoherence due to vibrations is crucial to reach this milestone, but this is hindered by our lack of understanding on the nature of vibrations and their coupling to spins. Here we propose a synergistic approach to study a prototypical molecular qubit. It combines inelastic X-ray scattering to measure phonon dispersions along the main symmetry directions of the crystal and spin dynamics simulations based on DFT. We show that the canonical Debye picture of lattice dynamics breaks down and that intra-molecular vibrations with very-low energies of 1-2 meV are largely responsible for spin relaxation up to ambient temperature. We identify the origin of these modes, thus providing a rationale for improving spin coherence. The power and flexibility of our approach open new avenues for the investigation of magnetic molecules with the potential of removing roadblocks toward their use in quantum devices.
Collapse
Affiliation(s)
- E Garlatti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma and UdR Parma, INSTM, I-43124, Parma, Italy
- INFN, Sezione di Milano-Bicocca, gruppo collegato di Parma, I-43124, Parma, Italy
| | - A Albino
- Dipartimento di Chimica 'Ugo Schiff', Università Degli Studi di Firenze and UdR Firenze, INSTM, I-50019, Sesto Fiorentino, Italy
| | - S Chicco
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma and UdR Parma, INSTM, I-43124, Parma, Italy
| | - V H A Nguyen
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland
| | - F Santanni
- Dipartimento di Chimica 'Ugo Schiff', Università Degli Studi di Firenze and UdR Firenze, INSTM, I-50019, Sesto Fiorentino, Italy
| | - L Paolasini
- ESRF - The European Synchrotron Radiation Facility, F-38043, Grenoble, Cedex 09, France
| | - C Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - R Caciuffo
- INFN, Sezione di Genova, I-16146, Genova, Italy
| | - F Totti
- Dipartimento di Chimica 'Ugo Schiff', Università Degli Studi di Firenze and UdR Firenze, INSTM, I-50019, Sesto Fiorentino, Italy
| | - P Santini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma and UdR Parma, INSTM, I-43124, Parma, Italy
- INFN, Sezione di Milano-Bicocca, gruppo collegato di Parma, I-43124, Parma, Italy
| | - R Sessoli
- Dipartimento di Chimica 'Ugo Schiff', Università Degli Studi di Firenze and UdR Firenze, INSTM, I-50019, Sesto Fiorentino, Italy.
| | - A Lunghi
- School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2, Ireland.
| | - S Carretta
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma and UdR Parma, INSTM, I-43124, Parma, Italy.
- INFN, Sezione di Milano-Bicocca, gruppo collegato di Parma, I-43124, Parma, Italy.
| |
Collapse
|
15
|
Tesi L, Stemmler F, Winkler M, Liu SSY, Das S, Sun X, Zharnikov M, Ludwigs S, van Slageren J. Modular Approach to Creating Functionalized Surface Arrays of Molecular Qubits. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208998. [PMID: 36609776 DOI: 10.1002/adma.202208998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The quest for developing quantum technologies is driven by the promise of exponentially faster computations, ultrahigh performance sensing, and achieving thorough understanding of many-particle quantum systems. Molecular spins are excellent qubit candidates because they feature long coherence times, are widely tunable through chemical synthesis, and can be interfaced with other quantum platforms such as superconducting qubits. A present challenge for molecular spin qubits is their integration in quantum devices, which requires arranging them in thin films or monolayers on surfaces. However, clear proof of the survival of quantum properties of molecular qubits on surfaces has not been reported so far. Furthermore, little is known about the change in spin dynamics of molecular qubits going from the bulk to monolayers. Here, a versatile bottom-up method is reported to arrange molecular qubits as functional groups of self-assembled monolayers (SAMs) on surfaces, combining molecular self-organization and click chemistry. Coherence times of up to 13 µs demonstrate that qubit properties are maintained or even enhanced in the monolayer.
Collapse
Affiliation(s)
- Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Friedrich Stemmler
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Mario Winkler
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sherri S Y Liu
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Saunak Das
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Xiuming Sun
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Michael Zharnikov
- Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
16
|
Campanella AJ, Üngör Ö, Zadrozny JM. Quantum Mimicry With Inorganic Chemistry. COMMENT INORG CHEM 2023; 44:11-53. [PMID: 38515928 PMCID: PMC10954259 DOI: 10.1080/02603594.2023.2173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.
Collapse
Affiliation(s)
- Anthony J. Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Joseph M. Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| |
Collapse
|
17
|
Ranieri D, Santanni F, Privitera A, Albino A, Salvadori E, Chiesa M, Totti F, Sorace L, Sessoli R. An exchange coupled meso- meso linked vanadyl porphyrin dimer for quantum information processing. Chem Sci 2022; 14:61-69. [PMID: 36605752 PMCID: PMC9769127 DOI: 10.1039/d2sc04969d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/30/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
We report here the synthesis of a new meso-meso (m-m) singly linked vanadyl-porphyrin dimer that crystallizes in two different pseudo-polymorphs. The single crystal continuous-wave electron paramagnetic resonance investigation evidences a small but crucial isotropic exchange interaction, J, between the two tilted, and thus distinguishable, spin centers of the order of 10-2 cm-1. The experimental and DFT studies evidence a correlation between J values and porphyrin plane tilting angle and distortion. Pulsed EPR analysis shows that the two vanadyl dimers maintain the coherence time of the monomer. With the obtained spin Hamiltonian parameters, we identify suitable transitions that could be used as computational basis states. Our results, coupled with the evaporability of porphyrin systems, establish this class of dimers as extremely promising for quantum information processing applications.
Collapse
Affiliation(s)
- Davide Ranieri
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Fabio Santanni
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Alberto Privitera
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Andrea Albino
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Enrico Salvadori
- Department of Chemistry, NIS, University of TurinVia P. Giuria 7I10125 TorinoItaly
| | - Mario Chiesa
- Department of Chemistry, NIS, University of TurinVia P. Giuria 7I10125 TorinoItaly
| | - Federico Totti
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Lorenzo Sorace
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| | - Roberta Sessoli
- Department of Chemistry “Ugo Schiff” & INSTM RU, University of FlorenceVia della Lastruccia 350019 Sesto FiorentinoItaly
| |
Collapse
|
18
|
Rogers CJ, Asthana D, Brookfield A, Chiesa A, Timco GA, Collison D, Natrajan LS, Carretta S, Winpenny REP, Bowen AM. Modelling Conformational Flexibility in a Spectrally Addressable Molecular Multi‐Qubit Model System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ciarán J. Rogers
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Deepak Asthana
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
- Department of Chemistry Ashoka University Sonipat Haryana India
| | - Adam Brookfield
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Alessandro Chiesa
- Dipartimento di Scienze Matematiche Fisiche e Informatiche Università di Parma 43124 Parma Italy
- INFN–Sezione di Milano-Bicocca Gruppo Collegato di Parma I-43124 Parma Italy
- UdR Parma INSTM I-43124 Parma Italy
| | - Grigore A. Timco
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David Collison
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Louise S. Natrajan
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stefano Carretta
- Dipartimento di Scienze Matematiche Fisiche e Informatiche Università di Parma 43124 Parma Italy
- INFN–Sezione di Milano-Bicocca Gruppo Collegato di Parma I-43124 Parma Italy
- UdR Parma INSTM I-43124 Parma Italy
| | - Richard E. P. Winpenny
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Alice M. Bowen
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
19
|
Rogers CJ, Asthana D, Brookfield A, Chiesa A, Timco GA, Collison D, Natrajan LS, Carretta S, Winpenny REP, Bowen AM. Modelling Conformational Flexibility in a Spectrally Addressable Molecular Multi-Qubit Model System. Angew Chem Int Ed Engl 2022; 61:e202207947. [PMID: 36222278 PMCID: PMC9828767 DOI: 10.1002/anie.202207947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/11/2022]
Abstract
Dipolar coupled multi-spin systems have the potential to be used as molecular qubits. Herein we report the synthesis of a molecular multi-qubit model system with three individually addressable, weakly interacting, spin1 / 2 ${{ 1/2 }}$ centres of differing g-values. We use pulsed Electron Paramagnetic Resonance (EPR) techniques to characterise and separately address the individual electron spin qubits; CuII , Cr7 Ni ring and a nitroxide, to determine the strength of the inter-qubit dipolar interaction. Orientation selective Relaxation-Induced Dipolar Modulation Enhancement (os-RIDME) detecting across the CuII spectrum revealed a strongly correlated CuII -Cr7 Ni ring relationship; detecting on the nitroxide resonance measured both the nitroxide and CuII or nitroxide and Cr7 Ni ring correlations, with switchability of the interaction based on differing relaxation dynamics, indicating a handle for implementing EPR-based quantum information processing (QIP) algorithms.
Collapse
Affiliation(s)
- Ciarán J. Rogers
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Deepak Asthana
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
- Department of ChemistryAshoka UniversitySonipatHaryanaIndia
| | - Adam Brookfield
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alessandro Chiesa
- Dipartimento di Scienze Matematiche Fisiche e InformaticheUniversità di Parma43124ParmaItaly
- INFN–Sezione di Milano-BicoccaGruppo Collegato di ParmaI-43124ParmaItaly
- UdR ParmaINSTMI-43124ParmaItaly
| | - Grigore A. Timco
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - David Collison
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Louise S. Natrajan
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Stefano Carretta
- Dipartimento di Scienze Matematiche Fisiche e InformaticheUniversità di Parma43124ParmaItaly
- INFN–Sezione di Milano-BicoccaGruppo Collegato di ParmaI-43124ParmaItaly
- UdR ParmaINSTMI-43124ParmaItaly
| | - Richard E. P. Winpenny
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alice M. Bowen
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
20
|
Lockyer S, Chiesa A, Brookfield A, Timco GA, Whitehead GFS, McInnes EJL, Carretta S, Winpenny REP. Five-Spin Supramolecule for Simulating Quantum Decoherence of Bell States. J Am Chem Soc 2022; 144:16086-16092. [PMID: 36007954 PMCID: PMC9460766 DOI: 10.1021/jacs.2c06384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/28/2022]
Abstract
We report a supramolecule that contains five spins of two different types and with, crucially, two different and predictable interaction energies between the spins. The supramolecule is characterized, and the interaction energies are demonstrated by electron paramagnetic resonance (EPR) spectroscopy. Based on the measured parameters, we propose experiments that would allow this designed supramolecule to be used to simulate quantum decoherence in maximally entangled Bell states that could be used in quantum teleportation.
Collapse
Affiliation(s)
- Selena
J. Lockyer
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alessandro Chiesa
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - Adam Brookfield
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Grigore A. Timco
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Eric J. L. McInnes
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Stefano Carretta
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, Gruppo Collegato di Parma, I-43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - Richard E. P. Winpenny
- Department
of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
21
|
Chiesa A, Petiziol F, Chizzini M, Santini P, Carretta S. Theoretical Design of Optimal Molecular Qudits for Quantum Error Correction. J Phys Chem Lett 2022; 13:6468-6474. [PMID: 35816705 PMCID: PMC9310095 DOI: 10.1021/acs.jpclett.2c01602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 05/08/2023]
Abstract
We pinpoint the key ingredients ruling decoherence in multispin clusters, and we engineer the system Hamiltonian to design optimal molecules embedding quantum error correction. These are antiferromagnetically coupled systems with competing exchange interactions, characterized by many low-energy states in which decoherence is dramatically suppressed and does not increase with the system size. This feature allows us to derive optimized code words, enhancing the power of the quantum error correction code by orders of magnitude. We demonstrate this by a complete simulation of the system dynamics, including the effect of decoherence driven by a nuclear spin bath and the full sequence of pulses to implement error correction and logical gates between protected states.
Collapse
Affiliation(s)
- A. Chiesa
- Università
di Parma, Dipartimento di
Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
- Gruppo
Collegato di Parma, INFN−Sezione
di Milano-Bicocca, 43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - F. Petiziol
- Institut
für Theoretische Physik, Technische
Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - M. Chizzini
- Università
di Parma, Dipartimento di
Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
- Gruppo
Collegato di Parma, INFN−Sezione
di Milano-Bicocca, 43124 Parma, Italy
| | - P. Santini
- Università
di Parma, Dipartimento di
Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
- Gruppo
Collegato di Parma, INFN−Sezione
di Milano-Bicocca, 43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| | - S. Carretta
- Università
di Parma, Dipartimento di
Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
- Gruppo
Collegato di Parma, INFN−Sezione
di Milano-Bicocca, 43124 Parma, Italy
- UdR
Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|
22
|
Alfieri A, Anantharaman SB, Zhang H, Jariwala D. Nanomaterials for Quantum Information Science and Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109621. [PMID: 35139247 DOI: 10.1002/adma.202109621] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Quantum information science and engineering (QISE)-which entails the use of quantum mechanical states for information processing, communications, and sensing-and the area of nanoscience and nanotechnology have dominated condensed matter physics and materials science research in the 21st century. Solid-state devices for QISE have, to this point, predominantly been designed with bulk materials as their constituents. This review considers how nanomaterials (i.e., materials with intrinsic quantum confinement) may offer inherent advantages over conventional materials for QISE. The materials challenges for specific types of qubits, along with how emerging nanomaterials may overcome these challenges, are identified. Challenges for and progress toward nanomaterials-based quantum devices are condidered. The overall aim of the review is to help close the gap between the nanotechnology and quantum information communities and inspire research that will lead to next-generation quantum devices for scalable and practical quantum applications.
Collapse
Affiliation(s)
- Adam Alfieri
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Surendra B Anantharaman
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huiqin Zhang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
23
|
Chizzini M, Crippa L, Zaccardi L, Macaluso E, Carretta S, Chiesa A, Santini P. Quantum error correction with molecular spin qudits. Phys Chem Chem Phys 2022; 24:20030-20039. [DOI: 10.1039/d2cp01228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular multi-level spin qudits are very promising for quantum computing, embedding quantum error correction within single objects. We compare the performance of electronic/nuclear molecular qudits in the implementation of quantum error correction.
Collapse
Affiliation(s)
- Mario Chizzini
- Dipartimento di Scienze Matematiche, Università di Parma, Fisiche e Informatiche, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma, I-43124 Parma, Italy
| | - Luca Crippa
- Dipartimento di Scienze Matematiche, Università di Parma, Fisiche e Informatiche, I-43124 Parma, Italy
- IBM Italia s.p.a., Circonvallazione Idroscalo, I-20090 Segrate, Italy
| | - Luca Zaccardi
- Dipartimento di Scienze Matematiche, Università di Parma, Fisiche e Informatiche, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - Emilio Macaluso
- Dipartimento di Scienze Matematiche, Università di Parma, Fisiche e Informatiche, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - Stefano Carretta
- Dipartimento di Scienze Matematiche, Università di Parma, Fisiche e Informatiche, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - Alessandro Chiesa
- Dipartimento di Scienze Matematiche, Università di Parma, Fisiche e Informatiche, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| | - Paolo Santini
- Dipartimento di Scienze Matematiche, Università di Parma, Fisiche e Informatiche, I-43124 Parma, Italy
- INFN-Sezione di Milano-Bicocca, gruppo collegato di Parma, I-43124 Parma, Italy
- UdR Parma, INSTM, I-43124 Parma, Italy
| |
Collapse
|