1
|
Higashi T, Domen K. Interfacial Design of Particulate Photocatalyst Materials for Green Hydrogen Production. CHEMSUSCHEM 2024; 17:e202400663. [PMID: 38794839 DOI: 10.1002/cssc.202400663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Green hydrogen production using particulate photocatalyst materials has attracted much attention in recent years because this process could potentially lead to inexpensive and scalable solar-to-chemical energy conversion systems. Although the development of efficient particulate photocatalysts enabling one-step overall water splitting (OWS) with solar-to-hydrogen efficiencies in excess of 10 % remains challenging, promising photocatalyst candidates exhibiting OWS activity have been demonstrated. This review provides a comprehensive introduction to the solar-to-hydrogen energy conversion process of semiconductor photocatalyst materials and highlights recent advances in photocatalytic OWS via both one-step and two-step photoexcitation processes. The review also covers recent developments in the photocatalytic OWS of SrTiO3, including the establishment of large-scale photocatalytic systems, interfacial design using cocatalysts to enhance water splitting activity, and its photoelectrochemical (PEC) properties at the electrified solid/liquid interface. In addition, there is a special focus on visible-light-absorbing oxynitride and oxysulfide particulate photocatalysts with absorption edges near 600 nm. Methods for photocatalyst preparation and surface modification, as well as PEC properties, are also discussed. The semiconductor properties of particulate photocatalysts obtained from photoelectroanalytical evaluations using particulate photoelectrodes are evaluated. This review is intended to provide guidelines for the future development of particulate photocatalysts capable of efficient and stable OWS.
Collapse
Affiliation(s)
- Tomohiro Higashi
- Institute for Tenure Track Promotion, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Kazunari Domen
- Office of University Professors, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8533, Japan
- Department of Chemistry, Kyung Hee University, Seoul, 130-701, Republic of, Korea
| |
Collapse
|
2
|
Mahmood Z, Garg S, Yuan Y, Xie L, Wang Y, Waite TD. Performance evaluation and optimization of a suspension-type reactor for use in heterogeneous catalytic ozonation. WATER RESEARCH 2024; 254:121410. [PMID: 38471200 DOI: 10.1016/j.watres.2024.121410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Packed fixed-bed reactors are traditionally used for heterogeneous catalytic ozonation. However, a high solid-to-liquid requirement, poor ozone dissolution, ineffective utilization of catalyst surface area, and production of large amounts of catalyst waste impede application of such reactors. In this study, we designed a suspension catalytic ozonation reactor and compared the performance of this reactor with that of a traditional fixed-bed catalytic ozonation reactor employing oxalic acid (OA) as the target contaminant. Our results showed that total O3 dissolved into the suspension reactor (117-134 mg.L-1) was much higher compared to that measured in the fixed-bed reactor (53 mg.L-1) due to a higher O3(g) interphase mass transfer rate in the suspension reactor. In accordance with the higher O3(g) interphase mass transfer, we observed a much higher proportional OA removal (32 %) compared to that achieved in the fixed-bed reactor (10%) employing an Fe-oxide catalyst supported on Al2O3 (Fe-oxide@Al2O3) in both reactors. Use of a double-layered Cu-Al hydroxide (Cu-Al LDHs) catalyst in the suspension reactor further enhanced the performance with nearly 90 % OA removal observed. Given the superior performance of the suspension reactor, we investigated the impact of operating conditions (catalyst dosage, hydraulic retention time and ozone dosage) employing Cu-Al LDHs as the catalyst. We also developed a mathematical kinetic model to describe the performance of the suspension reactor and, through use of the kinetic model, showed that O3(g) interphase transfer rate was the rate-limiting step in OA removal. Thus, improvement in ozone gas diffuser design is required to improve the performance of the suspension reactor. Overall, the present study demonstrated that suspension reactors were more effective than fixed-bed reactors for oxidation of surface-active organic compounds such as OA due to the higher ozone interphase mass transfer rate and effective utilization of the catalyst surface area that can be achieved. As such, further research on suspension reactor design and development of catalysts suitable for use in suspension reactors should facilitate large-scale application of catalytic ozonation processes by the wastewater treatment industry.
Collapse
Affiliation(s)
- Zarak Mahmood
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China
| | - Shikha Garg
- Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, Sydney 2052, Australia
| | - Yuting Yuan
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China
| | - Ling Xie
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China
| | - Yuan Wang
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China; Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, Sydney 2052, Australia
| | - T David Waite
- UNSW Center for Transformational Environmental Technologies, Environmental Protection Technology Industrial Park, Yixing 214200, PR China; Water Research Centre, School of Civil & Environmental Engineering, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
3
|
Liu Y, Pulignani C, Webb S, Cobb SJ, Rodríguez-Jiménez S, Kim D, Milton RD, Reisner E. Electrostatic [FeFe]-hydrogenase-carbon nitride assemblies for efficient solar hydrogen production. Chem Sci 2024; 15:6088-6094. [PMID: 38665532 PMCID: PMC11040649 DOI: 10.1039/d4sc00640b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
The assembly of semiconductors as light absorbers and enzymes as redox catalysts offers a promising approach for sustainable chemical synthesis driven by light. However, achieving the rational design of such semi-artificial systems requires a comprehensive understanding of the abiotic-biotic interface, which poses significant challenges. In this study, we demonstrate an electrostatic interaction strategy to interface negatively charged cyanamide modified graphitic carbon nitride (NCNCNX) with an [FeFe]-hydrogenase possessing a positive surface charge around the distal FeS cluster responsible for electron uptake into the enzyme. The strong electrostatic attraction enables efficient solar hydrogen (H2) production via direct interfacial electron transfer (DET), achieving a turnover frequency (TOF) of 18 669 h-1 (4 h) and a turnover number (TON) of 198 125 (24 h). Interfacial characterizations, including quartz crystal microbalance (QCM), photoelectrochemical impedance spectroscopy (PEIS), intensity-modulated photovoltage spectroscopy (IMVS), and transient photocurrent spectroscopy (TPC) have been conducted on the semi-artificial carbon nitride-enzyme system to provide a comprehensive understanding for the future development of photocatalytic hybrid assemblies.
Collapse
Affiliation(s)
- Yongpeng Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Carolina Pulignani
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Sophie Webb
- Department of Inorganic and Analytical Chemistry, University of Geneva Geneva 41211 Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva Geneva 41211 Switzerland
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | | | - Dongseok Kim
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva Geneva 41211 Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva Geneva 41211 Switzerland
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
4
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
5
|
Kobayashi A, Takizawa SY, Hirahara M. Photofunctional molecular assembly for artificial photosynthesis: Beyond a simple dye sensitization strategy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐Ivanšić B, Streb C. Comparative Evaluation of Light-Driven Catalysis: A Framework for Standardized Reporting of Data. Angew Chem Int Ed Engl 2022; 61:e202114106. [PMID: 35698245 PMCID: PMC9401044 DOI: 10.1002/anie.202114106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 01/05/2023]
Abstract
Light-driven homogeneous and heterogeneous catalysis require a complex interplay between light absorption, charge separation, charge transfer, and catalytic turnover. Optical and irradiation parameters as well as reaction engineering aspects play major roles in controlling catalytic performance. This multitude of factors makes it difficult to objectively compare light-driven catalysts and provide an unbiased performance assessment. This Scientific Perspective highlights the importance of collecting and reporting experimental data in homogeneous and heterogeneous light-driven catalysis. A critical analysis of the benefits and limitations of the commonly used experimental indicators is provided. Data collection and reporting according to FAIR principles is discussed in the context of future automated data analysis. The authors propose a minimum dataset as a basis for unified collecting and reporting of experimental data in homogeneous and heterogeneous light-driven catalysis. The community is encouraged to support the future development of this parameter list through an open online repository.
Collapse
Affiliation(s)
- Dirk Ziegenbalg
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andrea Pannwitz
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical Chemistry and Center of Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Department Functional InterfacesLeibniz Institute of Photonic Technology Jena (IPHT)Albert-Einstein-Straße 907745JenaGermany
| | - Carsten Streb
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10-1455128MainzGermany
| |
Collapse
|
7
|
Ziegenbalg D, Pannwitz A, Rau S, Dietzek‐Ivanšić B, Streb C. Vergleichende Evaluierung lichtgetriebener Katalyse: Ein Rahmenkonzept für das standardisierte Berichten von Daten**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dirk Ziegenbalg
- Institut für Chemieingenieurwesen Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Andrea Pannwitz
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Sven Rau
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Benjamin Dietzek‐Ivanšić
- Institut für Physikalische Chemie und Center of Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller-Universität Jena Helmholtzweg 4 07743 Jena Deutschland
- Department Funktionale Grenzflächen Leibniz-Institut für Photonische Technologien Jena (IPHT) Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Carsten Streb
- Institut für Anorganische Chemie I Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
8
|
Wu B, Liu N, Lu L, Zhang R, Zhang R, Shi W, Cheng P. A MOF-derived hierarchical CoP@ZnIn 2S 4 photocatalyst for visible light-driven hydrogen evolution. Chem Commun (Camb) 2022; 58:6622-6625. [PMID: 35584400 DOI: 10.1039/d2cc01946a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hierarchical CoP@ZnIn2S4 photocatalyst was prepared via a MOF-templated strategy. Owing to the unique composition and morphology that can facilitate the separation of photoexcited carriers, enhance light absorption and provide high surface area, CoP@ZnIn2S4 exhibited a H2 evolution rate of 0.103 mmol h-1 and remained stable over 24 hours.
Collapse
Affiliation(s)
- Boyuan Wu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ning Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Lele Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ruizhe Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Runhao Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Centre (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
9
|
Wang H, Zhang C, Kong L, Wang Y, Zhang S, Zhang X, Ding J, Ren N. Solar light photocatalytic transformation of heptachlorobiphenyl (PCB 180) using g-C 3N 4 based magnetic porous photocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128105. [PMID: 34973576 DOI: 10.1016/j.jhazmat.2021.128105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A novel porous core-shell magnetic β-cyclodextrin/graphitic carbon nitride photocatalyst (Mβ-CD/GCN) was synthesized and employed in a solar light driven catalytic system for the degradation of polychlorinated biphenyls (PCBs). The Mβ-CD/GCN display superior photocatalytic performance on account of porous structure and ultrathin GCN nanosheets design, the former improves the utilization of visible light by multiple scattering and reflection of incident light, and the latter accelerates electron transfer. The ultrahigh specific surface area (1255 m2 g-1) of Mβ-CD/GCN provided a large number of active sites for adsorption and degradation of the target pollution. The pseudo-first order reaction rate constant (kobs) for the degradation of PCB180 by Mβ-CD/GCN was 0.021 min-1, which improved 3.23 times than the bulk GCN. Additionally, the effects of various reaction parameters and water matrices were studied on the degradation of PCB180. Three possible degradation pathways and mechanism of PCB180 were speculated according to the identification of reaction intermediates and detection of reactive species. The solar light driven Mβ-CD/GCN catalytic technology is a promising method not only for the control of persistent organic pollutants (POPs), but also the catalyst could be recovered and reused through simple magnetic separation.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem, Harbin Institute of Technology, Harbin 150090, China
| | - Chenyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingru Kong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sijia Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiulian Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|