1
|
Park KC, Lim J, Thaggard GC, Shustova NB. Mining for Metal-Organic Systems: Chemistry Frontiers of Th-, U-, and Zr-Materials. J Am Chem Soc 2024; 146:18189-18204. [PMID: 38943655 DOI: 10.1021/jacs.4c06088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
The conceptual framework presented in this Perspective overviews the design principles of innovative thorium-based materials that could address urgent needs of the medicinal, nuclear energy, and waste remediation sectors from the lens of zirconium and uranium analogs. We survey the intersections of Zr, Th, and U chemistry with a focus on how the intrinsic behavior of each metal translates to broader material properties, including, but not limited to, structural and topological diversity, preferential metal-ligand binding, and reactivity. On the example of several classes of materials, including organometallic complexes, polyoxometalates, and the primary focus of this Perspective, metal-organic frameworks (MOFs), the design principles that govern the preparation of Zr-, Th-, and U-compounds, including oxophilicity, variation in oxidation states, and stable coordination environments have been considered. Further, we highlight how the impact of the mentioned variables may shift throughout the progression from discrete molecular systems to extended structures. We discuss the common assumption that zirconium-organic materials are typically considered a close analog of thorium-based congeners in areas such as material design and preparation. Through consideration of fundamental chemistry principles, we shed light on the relationships between Zr-, Th-, and U-based materials and highlight how a critical analysis of their distinct properties can be used to target a desired material performance. As a result, we provide a detailed understanding of Th-based materials chemistry by anchoring their fundamental properties between two well-studied reference points, zirconium- and uranium-containing analogs.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
2
|
Lu H, Zheng Z, Hou H, Bai Y, Qiu J, Wang J, Lin J. Fine-Tuning X-Ray Sensitivity in Organic-Inorganic Hybrids via an Unprecedented Mixed-Ligand Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305378. [PMID: 37939314 PMCID: PMC10767407 DOI: 10.1002/advs.202305378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Crystalline organic-inorganic hybrids, which exhibit colorimetric responses to ionizing radiation, have recently been recognized as promising alternatives to conventional X-ray dosimeters. However, X-ray-responsive organic-inorganic hybrids are scarce and the strategy to fine-tune their detection sensitivity remains elusive. Herein, an unprecedented mixed-ligand strategy is reported to modulate the X-ray detection efficacy of organic-inorganic hybrids. Deliberately blending the stimuli-responsive terpyridine carboxylate ligand (tpc- ) and the auxiliary pba- group with different ratios gives rise to two OD thorium-bearing clusters (Th-102 and Th-103) and a 1D coordination polymer (Th-104). Notably, distinct X-ray sensitivity is evident as a function of molar ratio of the tpc- ligand, following the trend of Th-102 > Th-103 > Th-104. Moreover, Th-102, which is exclusively built from the tpc- ligands with the highest degree of π-π interactions, exhibits the most sensitive radiochromic and fluorochromic responses toward X-ray with the lowest detection limit of 1.5 mGy. The study anticipates that this mixed-ligand strategy will be a versatile approach to tune the X-ray sensing efficacy of organic-inorganic hybrids.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Huiliang Hou
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Yaoyao Bai
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jie Qiu
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| | - Jian‐Qiang Wang
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jia Luo RoadShanghai201800P. R. China
| | - Jian Lin
- School of Nuclear Science and TechnologyXi'an Jiaotong UniversityNo.28, West Xianning RoadXi'an710049P. R. China
| |
Collapse
|
3
|
Arteaga A, Nicholas AD, Sinnwell MA, McNamara BK, Buck EC, Surbella RG. Expanding the Transuranic Metal-Organic Framework Portfolio: The Optical Properties of Americium(III) MOF-76. Inorg Chem 2023; 62:21036-21043. [PMID: 38038352 DOI: 10.1021/acs.inorgchem.3c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Reported is the synthesis, crystal structure, and solid-state characterization of a new americium containing metal-organic framework (MOF), [Am(C9H3O6)(H2O)], MOF-76(Am). This material is constructed from Am3+ metal centers and 1,3,5-tricarboxylic acid (BTC) ligands, forming a porous three-dimensional framework that is isostructural with several known trivalent lanthanide (Ln) analogs (e.g., Ce, Nd, and Sm-Lu). The Am3+ ions have seven coordinates and assume a distorted, capped trigonal prismatic geometry with C1 symmetry. The Am3+-O bonds were studied via infrared spectroscopy and compared to several MOF-76(Ln) analogs, where Ln = Nd3+, Eu3+, Tb3+, and Ho3+. The results show that the strength of the ligand carboxylate stretching and bending modes increase with Nd3+ < Eu3+ < Am3+ < Tb3+ < Ho3+, suggesting the metal-oxygen bonds are predominantly ionic. Optical absorbance spectroscopy measurements reveal strong f-f transitions; some exhibit pronounced crystal field splitting. The photoluminescence spectrum contains weak Am3+-based emission that is achieved through direct and indirect metal center excitation. The weak emissive behavior is somewhat surprising given that ligand-to-metal resonance energy transfer is efficient in the isoelectronic Eu3+ (4f6) and related Tb3+ (4f8) analogs. The optical properties were explored further within a series of heterometallic MOF-76(Tb1-xAmx) (x = 0.8, 0.2, and 0.1) samples, and the results reveal enhanced Am3+ photoluminescence.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Michael A Sinnwell
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Bruce K McNamara
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Edgar C Buck
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
4
|
Windorff CJ, Goodwin CAP, Sperling JM, Albrecht-Schönzart TE, Bai Z, Evans WJ, Huffman ZK, Jeannin R, Long BN, Mills DP, Poe TN, Ziller JW. Stabilization of Pu(IV) in PuBr 4(OPCy 3) 2 and Comparisons with Structurally Similar ThX 4(OPR 3) 2 (R = Cy, Ph) Molecules. Inorg Chem 2023; 62:18136-18149. [PMID: 37875401 DOI: 10.1021/acs.inorgchem.3c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The pursuit of a trivalent plutonium halide phosphine oxide compound, e.g., "PuBr3(OPR)3," instead led to the isolation of the tetravalent trans-PuIVBr4(OPCy3)2, PuBr/Cy, compound by spontaneous oxidation of PuIII. The donating nature of phosphine oxides has allowed the isolation and characterization of PuBr/Cy by crystallographic, multinuclear NMR, solid state, and solution phase UV-vis-NIR spectroscopic techniques. The presence of a putative plutonyl(VI) complex formulated as "trans-PuVIO2Br2(OPCy3)2" was also observed spectroscopically and tentatively by single-crystal X-ray diffraction as a cocrystal of PuBr/Cy. A series of trans-ThX4(OPCy3)2 (X = Cl, ThCl/Cy; Br, ThBr/Cy; I, ThI/Cy) complexes were synthesized for comparison to PuBr/Cy. The triphenylphosphine oxide, OPPh3, complexes, trans-AnI4(OPPh3)2 (An = Th, ThI/Ph; U, UI/Ph), were also synthesized for comparison, completing the series trans-UX4(OPPh3)2 (X = Cl, Br, I), UX/Ph. To enable the synthesis of ThI/Cy and ThI/Ph, a new nonaqueous thorium iodide starting material, ThI4(Et2O)2, was synthesized. The syntheses of organic solvent soluble ThI4L2 (L = Et2O, OPCy3, and OPPh3) are the first examples of crystallographically characterized neutral thorium tetraiodide materials beyond binary ThI4. To show the viability of ThI4(Et2O)2 as a starting material for organothorium chemistry, (C5Me4H)3ThI was synthesized and crystallographically characterized.
Collapse
Affiliation(s)
- Cory J Windorff
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Zhuanling Bai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| | - William J Evans
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Zachary K Huffman
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Renaud Jeannin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Brian N Long
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - David P Mills
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
5
|
Lu H, Ma J, Yang J, Hou H, Lu J, Wang JQ, Wang Y, Lin J. A ratiometric radio-photoluminescence dosimeter based on a radical excimer for X-ray detection. Chem Commun (Camb) 2023; 59:12617-12620. [PMID: 37791606 DOI: 10.1039/d3cc03824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A novel radio-photoluminescence material featuring fluorochromic responses toward UV or X-ray irradiation has been obtained. Such a unique monomer- to excimer-based luminescence transition allows for dosimetry of ionizing radiation in a ratiometric manner. Rather than quenching the luminescence, the radiation-induced radical species of Th-105 boost the excimer emission, rendering it as a rare material possessing radical-excimers.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jingqi Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Junpu Yang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Huiliang Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jiacheng Lu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| |
Collapse
|
6
|
Ju Y, Li ZJ, Qiu J, Li X, Yang J, Zhang ZH, He MY, Wang JQ, Lin J. Adsorption and Detection of Iodine Species by a Thorium-Based Metal-Organic Framework. Inorg Chem 2023; 62:8158-8165. [PMID: 37186814 DOI: 10.1021/acs.inorgchem.3c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Actinide-bearing metal-organic frameworks (MOFs) encompass intriguing structures and properties, but the radioactivity of actinide cripples their applications. Herein, we have constructed a new thorium-based MOF (Th-BDAT) as a bifunctional platform for the adsorption and detection of radioiodine, a more radioactive fission product that can readily spread through the atmosphere in its molecular form or via solution as anionic species. The iodine capture within the framework of Th-BDAT from both the vapor phase and the cyclohexane solution has been verified, showing that Th-BDAT features maximum I2 adsorption capacities (Qmax) of 959 and 1046 mg/g, respectively. Notably, the Qmax of Th-BDAT toward I2 from cyclohexane solution ranks among the highest value for Th-MOFs reported to date. Furthermore, incorporating highly extended and π-electron-rich BDAT4- ligands renders Th-BDAT as a luminescent chemosensor whose emission can be selectively quenched by iodate with a detection limit of 1.367 μM. Our findings thus foreshadow promising directions that might unlock the full potential of actinide-based MOFs from the point of view of practical application.
Collapse
Affiliation(s)
- Yu Ju
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an 710049, P. R. China
| | - Xiaoyun Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Junpu Yang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an 710049, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.1, Gehu Middle Road, Changzhou 213164, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an 710049, P. R. China
| |
Collapse
|
7
|
Panda J, Tripathy SP, Dash S, Ray A, Behera P, Subudhi S, Parida K. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. NANOSCALE 2023; 15:7640-7675. [PMID: 37066602 DOI: 10.1039/d3nr00274h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photocatalysis, as an amenable and effective process, can be adopted for pollution remediation and to alleviate the ongoing energy crisis. In this case, recently, metal organic frameworks (MOFs) have attracted increasing attention in the field of photocatalysis owning to their unique characteristics including large specific surface area, tuneable pore architecture, mouldable framework composition, tuneable band structure, and exceptional photon absorption tendency complimented with superior anti-recombination of excitons. Among the plethora of frameworks, inner transition metal based-MOFs (IT-MOFs) have started to garner significant traction as photocatalysts due to their distinct characteristics compared to conventional transition metal-based frameworks. Typically, IT-MOFs have the tendency to generate high nuclearity clusters and possess abundant Lewis acidic sites, together with mixed valency, which aids in easily converting redox couples, thereby making them a suitable candidate for various photocatalytic reactions. Therefore, in this contribution, we aim to summarise the excellent photocatalytic performance of IT-MOFs and their composites accompanied by a thorough discussion of their topological changes with a variation in the structure of the metal cluster, fabrication routes, morphological features, and physico-chemical properties together with a brief discussion of computational findings. Moreover, we attempt to explore the scientific understanding of the functionalities of IT-MOFs and their composites with detailed mechanistic pathways for in-depth clarity towards photocatalysis. Furthermore, we present a comprehensive analysis of IT-MOFs for various crucial photocatalytic applications such as H2/O2 evolution, organic pollutant degradation, organic transformation, and N2 and CO2 reduction. In addition, we discuss the measures employed to enhance their performance with some future directions to address the challenges with IT-MOF-based nanomaterials.
Collapse
Affiliation(s)
- Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Srabani Dash
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
8
|
Hanna SL, Farha OK. Energy-structure-property relationships in uranium metal-organic frameworks. Chem Sci 2023; 14:4219-4229. [PMID: 37123191 PMCID: PMC10132172 DOI: 10.1039/d3sc00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Located at the foot of the periodic table, uranium is a relatively underexplored element possessing rich chemistry. In addition to its high relevance to nuclear power, uranium shows promise for small molecule activation and photocatalysis, among many other powerful functions. Researchers have used metal-organic frameworks (MOFs) to harness uranium's properties, and in their quest to do so, have discovered remarkable structures and unique properties unobserved in traditional transition metal MOFs. More recently, (e.g. the last 8-10 years), theoretical calculations of framework energetics have supplemented structure-property studies in uranium MOFs (U-MOFs). In this Perspective, we summarize how these budding energy-structure-property relationships in U-MOFs enable a deeper understanding of chemical phenomena, enlarge chemical space, and elevate the field to targeted, rather than exploratory, discovery. Importantly, this Perspective encourages interdisciplinary connections between experimentalists and theorists by demonstrating how these collaborations have elevated the entire U-MOF field.
Collapse
Affiliation(s)
- Sylvia L Hanna
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University Evanston IL 60208 USA
- Department of Chemical and Biological Engineering, Northwestern University Evanston IL 60208 USA
| |
Collapse
|
9
|
Arteaga A, Nicholas AD, Ducati LC, Autschbach J, Surbella RG. Americium Oxalate: An Experimental and Computational Investigation of Metal-Ligand Bonding. Inorg Chem 2023; 62:4814-4822. [PMID: 36920249 DOI: 10.1021/acs.inorgchem.2c03976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A novel actinide-containing coordination polymer, [Am(C2O4)(H2O)3Cl] (Am-1), has been synthesized and structurally characterized. The crystallographic analysis reveals that the structure is two-dimensional and comprised of pseudo-dimeric Am3+ nodes that are bridged by oxalate ligands to form sheets. Each metal center is nine-coordinate, forming a distorted capped square antiprism geometry with a C1 symmetry, and features bound oxalate, aqua, and chloro ligands. The Am3+-ligand bonds were probed computationally using the quantum theory of atoms in molecules nd natural localized molecular orbital approaches to investigate the underlying mechanisms and hybrid atomic orbital contributions therein. The analyses indicate that the bonds within Am-1 are predominantly ionic and the 5f shell of the Am3+ metal centers does not add a significant covalent contribution to the bonds. Our bonding assessment is supported by measurements on the optical properties of Am-1 using diffuse reflectance and photoluminescence spectroscopies. The position of the principal absorption band at 507 nm (5L6' ← 7F0') is notable because it is consistent with previously reported americium oxalate complexes in solution, indicating similarities in the electronic structure and ionic bonding. Compound Am-1 is an active phosphor, featuring strong bright-blue oxalate-based luminescence with no evidence of metal-centered emission.
Collapse
Affiliation(s)
- Ana Arteaga
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Aaron D Nicholas
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| | - Lucas C Ducati
- Department of Fundamental Chemistry Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, 312 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Fu Y, Wang X, Ju Y, Zheng Z, Jian J, Li ZJ, Jin C, Wang JQ, Lin J. A robust thorium-organic framework as a bifunctional platform for iodine adsorption and Cr(VI) sensitization. Dalton Trans 2023; 52:1177-1181. [PMID: 36648495 DOI: 10.1039/d2dt03623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simple synthetic modulation based on thorium nitrate and tris((4-carboxyl)phenylduryl)amine (H3TCBPA) gives rise to a new thorium-based metal-organic framework, Th-TCBPA, which features excellent hydrolytic and thermal stabilities. Incorporating electron-rich TCBPA3- linkers not only endows Th-TCBPA with high adsorption capacity toward radioiodine vapor, but also makes it a luminescence sensor for the highly sensitive and selective detection of Cr(VI) anions.
Collapse
Affiliation(s)
- Yiran Fu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Xue Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Yu Ju
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China.
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Jie Jian
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Chan Jin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
11
|
Park KC, Kittikhunnatham P, Lim J, Thaggard GC, Liu Y, Martin CR, Leith GA, Toler DJ, Ta AT, Birkner N, Lehman-Andino I, Hernandez-Jimenez A, Morrison G, Amoroso JW, Zur Loye HC, DiPrete DP, Smith MD, Brinkman KS, Phillpot SR, Shustova NB. f-block MOFs: A Pathway to Heterometallic Transuranics. Angew Chem Int Ed Engl 2023; 62:e202216349. [PMID: 36450099 DOI: 10.1002/anie.202216349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
A novel series of heterometallic f-block-frameworks including the first examples of transuranic heterometallic 238 U/239 Pu-metal-organic frameworks (MOFs) and a novel monometallic 239 Pu-analog are reported. In combination with theoretical calculations, we probed the kinetics and thermodynamics of heterometallic actinide(An)-MOF formation and reported the first value of a U-to-Th transmetallation rate. We concluded that formation of uranyl species could be a driving force for solid-state metathesis. Density of states near the Fermi edge, enthalpy of formation, band gap, proton affinity, and thermal/chemical stability were probed as a function of metal ratios. Furthermore, we achieved 97 % of the theoretical maximum capacity for An-integration. These studies shed light on fundamental aspects of actinide chemistry and also foreshadow avenues for the development of emerging classes of An-containing materials, including radioisotope thermoelectric generators or metalloradiopharmaceuticals.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Nancy Birkner
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | | | | | - Gregory Morrison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.,Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Dave P DiPrete
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kyle S Brinkman
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA.,Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management (NEESRWM), Clemson University, Clemson, SC 29634, USA
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
12
|
Chen SH, Wang HQ. Synthesis, structures, and characterizations of four uranyl coordination polymers constructed by mixed-ligand strategy. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
14
|
Park KC, Martin CR, Leith GA, Thaggard GC, Wilson GR, Yarbrough BJ, Maldeni Kankanamalage BKP, Kittikhunnatham P, Mathur A, Jatoi I, Manzi MA, Lim J, Lehman-Andino I, Hernandez-Jimenez A, Amoroso JW, DiPrete DP, Liu Y, Schaeperkoetter J, Misture ST, Phillpot SR, Hu S, Li Y, Leydier A, Proust V, Grandjean A, Smith MD, Shustova NB. Capture Instead of Release: Defect-Modulated Radionuclide Leaching Kinetics in Metal-Organic Frameworks. J Am Chem Soc 2022; 144:16139-16149. [PMID: 36027644 DOI: 10.1021/jacs.2c06905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparison of defect-controlled leaching-kinetics modulation of metal-organic frameworks (MOFs) and porous functionalized silica-based materials was performed on the example of a radionuclide and radionuclide surrogate for the first time, revealing an unprecedented readsorption phenomenon. On a series of zirconium-based MOFs as model systems, we demonstrated the ability to capture and retain >99% of the transuranic 241Am radionuclide after 1 week of storage. We report the possibility of tailoring radionuclide release kinetics in MOFs through framework defects as a function of postsynthetically installed organic ligands including cation-chelating crown ether-based linkers. Based on comprehensive analysis using spectroscopy (EXAFS, UV-vis, FTIR, and NMR), X-ray crystallography (single crystal and powder), and theoretical calculations (nine kinetics models and structure simulations), we demonstrated the synergy of radionuclide integration methods, topological restrictions, postsynthetic scaffold modification, and defect engineering. This combination is inaccessible in any other material and highlights the advantages of using well-defined frameworks for gaining fundamental knowledge necessary for the advancement of actinide-based material development, providing a pathway for addressing upcoming challenges in the nuclear waste administration sector.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Preecha Kittikhunnatham
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Isak Jatoi
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Mackenzie A Manzi
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | | | | | - Jake W Amoroso
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - David P DiPrete
- Savannah River National Laboratory, Aiken, South Carolina 29808, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joseph Schaeperkoetter
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Scott T Misture
- Kazuo Inamori School of Engineering, Alfred University, Alfred, New York 14802, United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Shenyang Hu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yulan Li
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Antoine Leydier
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Vanessa Proust
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Agnès Grandjean
- Commissariat à l'Énergie Atomique (CEA), DES, ISEC, DMRC, University Montpellier, Marcoule, BP 17171, 30207 Bagnols-sur-Cèze Cedex, France
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
15
|
Xu M, Lu H, Wang C, Qiu J, Zheng Z, Guo X, Zhang ZH, He MY, Qian J, Lin J. Enhancing photosensitivity via the assembly of a uranyl coordination polymer. Chem Commun (Camb) 2022; 58:9389-9392. [PMID: 35904873 DOI: 10.1039/d2cc02985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic assembly of uranyl centres and luminescent 2,6-bis(pyrazol-1-yl)pyridine-4-carboxylates (bppCOOH) gives rise to a uranyl coordination polymer, namely U-bppCOO, which exhibits a luminescence quenching response toward UV or X-ray irradiation doses. Notably, the photosensitivity of U-bppCOO has been significantly enhanced via metal-ligand assembly compared with that of the naked bppCOOH ligand.
Collapse
Affiliation(s)
- Miaomiao Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Chunhui Wang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800, P. R. China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington, 99164-4630, USA
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Junfeng Qian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China.
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, 710049, P. R. China.
| |
Collapse
|
16
|
Li ZJ, Guo X, Qiu J, Lu H, Wang JQ, Lin J. Recent advances in the applications of thorium-based metal-organic frameworks and molecular clusters. Dalton Trans 2022; 51:7376-7389. [PMID: 35438104 DOI: 10.1039/d2dt00265e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This perspective highlights the recent advances in the structural and practical aspects of thorium-based metal-organic frameworks (Th-MOFs) and molecular clusters. Thorium, as an underexplored actinide, features surprisingly rich coordination geometries and accessibility of the 5f orbital. These features lead to a myriad of topologies and electronic structures, many of which are undocumented for other tetravalent metal-containing MOFs or clusters. Moreover, Th-MOFs inherit the modularity, structural tunability, porosity, and versatile functionality of the state-of-the-art MOFs. Recognizing the radioactive nature of these thorium-bearing materials that may limit their practical uses, Th-MOFs and Th-clusters still have great potential for various applications, including radionuclide sequestration, hydrocarbon storage/separation, radiation detection, photoswitch, CO2 conversion, photocatalysis, and electrocatalysis. The objective of this updated perspective is to propose pathways for the renaissance of interest in thorium-based materials.
Collapse
Affiliation(s)
- Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, WA 99164-4630, USA
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
17
|
Huang YW, Feng H, Xiong XH, Luo F. Multi-step Phase Transformation from Metal-Organic Frameworks to Inorganic Compounds for High-Purity Th(IV) Generation. Inorg Chem 2022; 61:7212-7216. [PMID: 35502907 DOI: 10.1021/acs.inorgchem.2c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The generation of high-purity thorium is the precondition for next-generation nuclear energy; however, this remains a challenging task. To this end, we present herein an ultrasimple technique with the combination of crystallization plus phase transformation. Crystallization into ECUT-68 is found to show almost 100% selective uptake of Th(IV) over rare earth and UO22+ ions, while multistep phase transformation from metal-organic frameworks (MOFs) to inorganic compounds is found to directly generate inorganic Th(IV) compound and then Th(IV) solution, suggesting its superior application in the generation of high-purity thorium.
Collapse
Affiliation(s)
- Yi-Wei Huang
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Han Feng
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Xiao-Hong Xiong
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Feng Luo
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| |
Collapse
|
18
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022; 61:e202202207. [PMID: 35212125 DOI: 10.1002/anie.202202207] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/12/2022]
Abstract
The fabrication of MOF polymer composite materials enables the practical applications of MOF-based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low-loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid- and solid-state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8-fold enhancement in the protection against an ultra-toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF-based protective gear against nerve agents.
Collapse
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Megan C Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - John H Xin
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Sergentu DC, Autschbach J. Covalency in actinide(iv) hexachlorides in relation to the chlorine K-edge X-ray absorption structure. Chem Sci 2022; 13:3194-3207. [PMID: 35414875 PMCID: PMC8926251 DOI: 10.1039/d1sc06454a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Chlorine K-edge X-ray absorption near edge structure (XANES) in actinideIV hexachlorides, [AnCl6]2- (An = Th-Pu), is calculated with relativistic multiconfiguration wavefunction theory (WFT). Of particular focus is a 3-peak feature emerging from U toward Pu, and its assignment in terms of donation bonding to the An 5f vs. 6d shells. With or without spin-orbit coupling, the calculated and previously measured XANES spectra are in excellent agreement with respect to relative peak positions, relative peak intensities, and peak assignments. Metal-ligand bonding analyses from WFT and Kohn-Sham theory (KST) predict comparable An 5f and 6d covalency from U to Np and Pu. Although some frontier molecular orbitals in the KST calculations display increasing An 5f-Cl 3p mixing from Th to Pu, because of energetic stabilization of 5f relative to the Cl 3p combinations of the matching symmetry, increasing hybridization is neither seen in the WFT natural orbitals, nor is it reflected in the calculated bond orders. The appearance of the pre-edge peaks from U to Pu and their relative intensities are rationalized simply by the energetic separation of transitions to 6d t2g versus transitions to weakly-bonded and strongly stabilized a2u, t2u and t1u orbitals with 5f character. The study highlights potential pitfalls when interpreting XANES spectra based on ground state Kohn-Sham molecular orbitals.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo State University of New York Buffalo NY 14260-3000 USA
| |
Collapse
|
20
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - Gregory W. Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - John H. Xin
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
21
|
Lu H, Zheng Z, Qiu J, Qian Y, Wang JQ, Lin J. Unveiling the new function of uranyl molecular clusters as fluorometric sensors for UV and X-ray dosimetry. Dalton Trans 2022; 51:3041-3045. [PMID: 35133375 DOI: 10.1039/d1dt04225d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simple synthetic modulation based on uranyl acetate and phenanthroline has resulted in two uranyl clusters (1 and 2) with different topologies and nuclearities. Notably, the dimeric complex exhibits distinct luminescence quenching upon UV and X-ray irradiation with detection limits of 4.30 × 10-6 J and 0.32 Gy, respectively. To advance the practical application, 1 was further fabricated with polyvinylidene fluoride into a flexible strip as a UV and X-ray indicator.
Collapse
Affiliation(s)
- Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China. .,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
22
|
Playing “Jenga” with MOFs: De-interpenetration for pore opening. Chem 2022. [DOI: 10.1016/j.chempr.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Kittikhunnatham P, Leith GA, Mathur A, Naglic JK, Martin CR, Park KC, McCullough K, Jayaweera HDAC, Corkill RE, Lauterbach J, Karakalos SG, Smith MD, Garashchuk S, Chen DA, Shustova NB. A Metal‐Organic Framework (MOF)‐Based Multifunctional Cargo Vehicle for Reactive‐Gas Delivery and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Gabrielle A. Leith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Jennifer K. Naglic
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Corey R. Martin
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Katherine McCullough
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | | | - Ryan E. Corkill
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Jochen Lauterbach
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Stavros G. Karakalos
- Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA
| | - Mark D. Smith
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Donna A. Chen
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
| |
Collapse
|
24
|
Lu H, Hou H, Hou YC, Zheng Z, Ma Y, Zhou Z, Guo X, Pan QJ, Wang Y, Qian Y, Wang JQ, Lin J. A New Concept of Radiation Detection Based on a Fluorochromic and Piezochromic Nanocluster. J Am Chem Soc 2022; 144:3449-3457. [DOI: 10.1021/jacs.1c11496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Huiliang Hou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yu-Chang Hou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Zhaofa Zheng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Yingying Ma
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) Beijing 100094, PR China
| | - Zhengyang Zhou
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University Pullman, Washington 99164-4630, United States
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Yonggang Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR) Beijing 100094, PR China
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China
- University of Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China
| |
Collapse
|
25
|
Zheng Z, Qiu J, Lu H, Wang JQ, Lin J. Luminometric dosimetry of X-ray radiation by a zwitterionic uranium coordination polymer. RSC Adv 2022; 12:12878-12881. [PMID: 35496343 PMCID: PMC9048573 DOI: 10.1039/d2ra00440b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
A novel X-ray dosimeter based on a uranium coordination polymer has been developed by the judicious synergy between the luminescent uranyl centres and zwitterionic tritopic ligands.
Collapse
Affiliation(s)
- Zhaofa Zheng
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jie Qiu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, P. R. China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
26
|
Wasson MC, Xie H, Wang X, Duncan JS, Farha OK. Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks. CrystEngComm 2022. [DOI: 10.1039/d2ce00650b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A rare example of phase transitions within Th-based MOFs is reported, relevant for nuclear energy and waste management. Further investigations into phase transitions in isostructural frameworks (Zr, Hf, Ce) provide a comparison of different hexanuclear clusters' stabilities.
Collapse
Affiliation(s)
- Megan C. Wasson
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Haomiao Xie
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Xingjie Wang
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joshua S. Duncan
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K. Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
27
|
Li F, Mei L, Peng H, Hu KQ, Chai Z, Liu N. Impact of Proximity Effect on Uranyl Coordination of Conformationally Variable Weakly-Bonded Cucurbit[6]uril-Bipyridinium Pseudorotaxane. CrystEngComm 2022. [DOI: 10.1039/d1ce01330k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To explore the proximity effect in uranyl coordination of weak-bonded cucurbit[6]uril(CB[6])-bipyridinium ligands, a new pseudorotaxane precursor C7BPCN3@CB[6] containing 1, 1'-(heptyl-1,7-diyl)bis(3-cyanopyridin-1-ium) bromide (C7BPCN3) with elongated alkyl chains and meta-substituted cyano groups,...
Collapse
|
28
|
Kittikhunnatham P, Leith GA, Mathur A, Naglic JK, Martin CR, Park KC, McCullough K, Jayaweera HDAC, Corkill RE, Lauterbach J, Karakalos SG, Smith MD, Garashchuk S, Chen DA, Shustova NB. A MOF Multifunctional Cargo Vehicle for Reactive Gas Delivery and Catalysis. Angew Chem Int Ed Engl 2021; 61:e202113909. [PMID: 34845811 DOI: 10.1002/anie.202113909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Efficient delivery of reactive and toxic gaseous reagents to organic reactions was studied using metal-organic frameworks (MOFs). Simultaneous cargo vehicle and catalytic capabilities of several MOFs were probed for the first time using the examples of aromatization, aminocarbonylation, and carbonylative Suzuki-Miyaura coupling reactions. These reactions highlight that MOFs can serve a dual role as a gas cargo vehicle and a catalyst, leading to product formation with yields similar to reactions employing pure gases. Furthermore, the MOFs can be recycled without sacrificing product yield, while simultaneously maintaining crystallinity. The reported findings were supported crystallographically and spectroscopically (e.g., diffuse reflectance infrared Fourier transform spectroscopy), foreshadowing a pathway for the development of multifunctional MOF-based reagent-catalyst cargo vessels for reactive reagents, as an attractive alternative to the use of toxic pure gases or gas generators.
Collapse
Affiliation(s)
- Preecha Kittikhunnatham
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Gabrielle A Leith
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29201, Columbia, UNITED STATES
| | - Abhijai Mathur
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Jennifer K Naglic
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - Corey R Martin
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Kyoung Chul Park
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Katherine McCullough
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - H D A Chathumal Jayaweera
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Ryan E Corkill
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Jochen Lauterbach
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Columbia, UNITED STATES
| | - Stavros G Karakalos
- University of South Carolina College of Engineering and Computing, Chemical Engineering, 301 Main Street, 29208, Coulmbia, UNITED STATES
| | - Mark D Smith
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Sophya Garashchuk
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Donna A Chen
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter Street, 29208, Columbia, UNITED STATES
| | - Natalia B Shustova
- University of South Carolina, Chemistry and Biochemistry, 631 Sumter street GSRC-533, SC, Columbia, UNITED STATES
| |
Collapse
|
29
|
Gilson SE, Fairley M, Hanna SL, Szymanowski JES, Julien P, Chen Z, Farha OK, LaVerne JA, Burns PC. Unusual Metal-Organic Framework Topology and Radiation Resistance through Neptunyl Coordination Chemistry. J Am Chem Soc 2021; 143:17354-17359. [PMID: 34652154 DOI: 10.1021/jacs.1c08854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A Np(V) neptunyl metal-organic framework (MOF) with rod-shaped secondary building units was synthesized, characterized, and irradiated with γ rays. Single-crystal X-ray diffraction data revealed an anionic framework containing infinite helical chains of actinyl-actinyl interaction (AAI)-connected neptunyl ions linked together through tetratopic tetrahedral organic ligands (NSM). NSM exhibits an unprecedented net, demonstrating that AAIs may be exploited to give new MOFs and new topologies. To probe its radiation stability, we undertook the first irradiation study of a transuranic MOF and its organic linker building block using high doses of γ rays. Diffraction and spectroscopic data demonstrated that the radiation resistance of NSM is greater than that of its linker building block alone. Approximately 6 MGy of irradiation begins to induce notable changes in the long- and short-range order of the framework, whereas 3 MGy of irradiation induces total X-ray amorphization and changes in the local vibrational bands of the linker building block.
Collapse
Affiliation(s)
- Sara E Gilson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Melissa Fairley
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sylvia L Hanna
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer E S Szymanowski
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Patrick Julien
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jay A LaVerne
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Peter C Burns
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
30
|
Patra K, Ansari SA, Mohapatra PK. Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. J Chromatogr A 2021; 1655:462491. [PMID: 34482010 DOI: 10.1016/j.chroma.2021.462491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Efficient separation of hazardous radionuclides from radioactive waste remains a challenge to the global acceptance of nuclear power due to complex nature of the waste, high radiotoxicities and presence of large number of interfering elements. Sorption of radioactive elements from liquid phase, gas phase or their solid particulates on various synthetic organic, inorganic or biological sorbents is looked as one of the options for their remediation. In this context, highly porous materials, termed as metal-organic frameworks (MOFs), have shown promise for efficient capturing of various types of radioactive elements. Major advantages that have been advocated for the application of MOFs in radionuclide sorption are their excellent chemical stability, and their large surface area due to abundant functional groups, and porosity. In this review, recent developments on the application of MOFs for radionuclide sequestration are briefly discussed. Focus has been devoted to address the separation of few crucial radioactive elements such as Th, U, Tc, Re, Se, Sr and Cs from aqueous solutions, which are important for liquid radioactive waste management. Apart from these radioactive metal ions, removal of radionuclide bearing gases such as I2, Xe, and Kr are also discussed. Aspects related to the interaction of MOFs with the radionuclides are also discussed. Finally, a perspective for comprehensive investigation of MOFs for their applications in radioactive waste management has been outlined.
Collapse
Affiliation(s)
- Kankan Patra
- Nuclear Recycles Board, Bhabha Atomic Research Centre, Tarapur 401502, India
| | - Seraj A Ansari
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Prasanta K Mohapatra
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
31
|
The Surge of Metal-Organic-Framework (MOFs)-Based Electrodes as Key Elements in Electrochemically Driven Processes for the Environment. Molecules 2021; 26:molecules26185713. [PMID: 34577184 PMCID: PMC8467760 DOI: 10.3390/molecules26185713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Metal–organic-frameworks (MOFs) are emerging materials used in the environmental electrochemistry community for Faradaic and non-Faradaic water remediation technologies. It has been concluded that MOF-based materials show improvement in performance compared to traditional (non-)faradaic materials. In particular, this review outlines MOF synthesis and their application in the fields of electron- and photoelectron-Fenton degradation reactions, photoelectrocatalytic degradations, and capacitive deionization physical separations. This work overviews the main electrode materials used for the different environmental remediation processes, discusses the main performance enhancements achieved via the utilization of MOFs compared to traditional materials, and provides perspective and insights for the further development of the utilization of MOF-derived materials in electrified water treatment.
Collapse
|