1
|
Wang K, Xu C, Zhao X, Jiang Y, Bisker G, Yang F. Advances in Liquid-Phase Assembly of Clusters into Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51826-51836. [PMID: 39288211 DOI: 10.1021/acsami.4c12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Insight into the behaviors of molecules in confined space is highly desired for the deep understanding of the mechanism of chemical reactions in a microenvironment. Yet the direct access of molecular evolutions at atomic resolution in nanoconfinements is still challenging. Among various guests, atomically precise clusters with well-defined structures are better suited for monitoring the chemical and physical processes in nanochannels because of their visibility under electron microscopy and identical structures that ensure homogeneous interactions. Developing an efficient method for assembling clusters into a confined space is essential for advancing mechanisms of these processes. In this Perspective, we provide an overview of the assembly of clusters into single-walled carbon nanotubes (SWCNTs) in the liquid phase. We begin with the introduction of assembling methodologies, followed by a discussion of mechanisms of confined assembly in liquids. The host-guest interactions between clusters and nanotubes and the molecular reactions in nanochannels revealed by transmission electron microscopy are unveiled, and the cluster@SWCNT heterostructure-based emerging applications are highlighted. At the end, we discuss the challenges and opportunities and expound our outlook in this field.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yulong Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Zhang L, Wang K, Zhao X, Yang G, Jiang Y, Yang F. Directional growth and reconstruction of ultrafine uranium oxide nanorods within single-walled carbon nanotubes. Chem Sci 2024:d4sc03415e. [PMID: 39263658 PMCID: PMC11382540 DOI: 10.1039/d4sc03415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024] Open
Abstract
Understanding the atomic structures and dynamic evolution of uranium oxides is crucial for the reliable operation of fission reactors. Among them, U4O9-as an important intermediate in the oxidation of UO2 to UO2+x -plays an important role in the nucleation and conversion of uranium oxides. Herein, we realize the confined assembly of uranyl within SWCNTs in liquid phase and reveal the directional growth and reconstruction of U4O9 nanorods in nanochannels, enabled by in situ scanning transmission electron microscopy (STEM) e-beam stimulation. The nucleation and crystallization of U4O9 nanorods in nanochannels obey the "non-classical nucleation" mechanism and exhibit remarkably higher growth rate compared to those grown outside. The rapid growth process is found to be accompanied by the formation and elimination of U atom vacancies and strain, aiming to achieve the minimum interfacial energy. Eventually, the segments of U4O9 nanorods in SWCNTs merge into single-crystal U4O9 nanorods via structural reconstruction at the interfaces, and 79% of them exhibit anisotropic growth along the specific 〈11̄0〉 direction. These findings pave the way for tailoring the atomic structures and interfaces of uranium oxides during the synthesis process to help improve the mechanical properties and stability of fission reactors.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Kun Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xin Zhao
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Guoping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology Nanchang 330013 China
| | - Yulong Jiang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
3
|
Smith JG, Sawant KJ, Zeng Z, Eldred TB, Wu J, Greeley JP, Gao W. Disproportionation chemistry in K 2PtCl 4 visualized at atomic resolution using scanning transmission electron microscopy. SCIENCE ADVANCES 2024; 10:eadi0175. [PMID: 38335285 PMCID: PMC10857378 DOI: 10.1126/sciadv.adi0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
The direct observation of a solid-state chemical reaction can reveal otherwise hidden mechanisms that control the reaction kinetics. However, probing the chemical bond breaking and formation at the molecular level remains challenging because of the insufficient spatial-temporal resolution and composition analysis of available characterization methods. Using atomic-resolution differential phase-contrast imaging in scanning transmission electron microscopy, we have visualized the decomposition chemistry of K2PtCl4 to identify its transient intermediate phases and their interfaces that characterize the chemical reduction process. The crystalline structure of K2PtCl4 is found to undergo a disproportionation reaction to form K2PtCl6, followed by gradual reduction to crystalline Pt metal and KCl. By directly imaging different Pt─Cl bond configurations and comparing them to models predicted via density functional theory calculations, a causal connection between the initial and final states of a chemical reaction is established, showcasing new opportunities to resolve reaction pathways through atomistic experimental visualization.
Collapse
Affiliation(s)
- Jacob G. Smith
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Kaustubh J. Sawant
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Tim B. Eldred
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Jianbo Wu
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jeffrey P. Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Wenpei Gao
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
4
|
Cardillo-Zallo I, Biskupek J, Bloodworth S, Marsden ES, Fay MW, Ramasse QM, Rance GA, Stoppiello CT, Cull WJ, Weare BL, Whitby RJ, Kaiser U, Brown PD, Khlobystov AN. Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas. ACS NANO 2024; 18:2958-2971. [PMID: 38251654 PMCID: PMC10832048 DOI: 10.1021/acsnano.3c07853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3-6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level.
Collapse
Affiliation(s)
- Ian Cardillo-Zallo
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Johannes Biskupek
- Electron
Microscopy Group of Materials Science, Central Facility for Electron
Microscopy, Ulm University, Ulm 89081, Germany
| | - Sally Bloodworth
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Elizabeth S. Marsden
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Michael W. Fay
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2QL, United
Kingdom
| | - Quentin M. Ramasse
- SuperSTEM
Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, United Kingdom
- School of
Chemical and Process Engineering and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Graham A. Rance
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2QL, United
Kingdom
| | - Craig T. Stoppiello
- Centre
for Microscopy and Microanalysis, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - William J. Cull
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Benjamin L. Weare
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2QL, United
Kingdom
| | - Richard J. Whitby
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Ute Kaiser
- Electron
Microscopy Group of Materials Science, Central Facility for Electron
Microscopy, Ulm University, Ulm 89081, Germany
| | - Paul D. Brown
- Department
of Mechanical, Materials & Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Andrei N. Khlobystov
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
5
|
Hoelzel H, Lee S, Amsharov KY, Jux N, Harano K, Nakamura E, Lungerich D. Time-resolved imaging and analysis of the electron beam-induced formation of an open-cage metallo-azafullerene. Nat Chem 2023; 15:1444-1451. [PMID: 37386284 DOI: 10.1038/s41557-023-01261-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/26/2023] [Indexed: 07/01/2023]
Abstract
The visualization of single-molecule reactions provides crucial insights into chemical processes, and the ability to do so has grown with the advances in high-resolution transmission electron microscopy. There is currently a limited mechanistic understanding of chemical reactions under the electron beam. However, such reactions may enable synthetic methodologies that cannot be accessed by traditional organic chemistry methods. Here we demonstrate the synthetic use of the electron beam, by in-depth single-molecule, atomic-resolution, time-resolved transmission electron microscopy studies, in inducing the formation of a doubly holed fullerene-porphyrin cage structure from a well-defined benzoporphyrin precursor deposited on graphene. Through real-time imaging, we analyse the hybrid's ability to host up to two Pb atoms, and subsequently probe the dynamics of the Pb-Pb binding motif in this exotic metallo-organic cage structure. Through simulation, we conclude that the secondary electrons, which accumulate in the periphery of the irradiated area, can also initiate chemical reactions. Consequently, designing advanced carbon nanostructures by electron-beam lithography will depend on the understanding and limitations of molecular radiation chemistry.
Collapse
Affiliation(s)
- Helen Hoelzel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Erlangen, Germany
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sol Lee
- Center for NanoMedicine, Institute for Basic Science (IBS), Seodaemun-gu, Seoul, South Korea
| | | | - Norbert Jux
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Dominik Lungerich
- Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Center for NanoMedicine, Institute for Basic Science (IBS), Seodaemun-gu, Seoul, South Korea.
- Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, South Korea.
| |
Collapse
|
6
|
Wang K, Xia GJ, Liu T, Yun Y, Wang W, Cao K, Yao F, Zhao X, Yu B, Wang YG, Jin C, He J, Li Y, Yang F. Anisotropic Growth of One-Dimensional Carbides in Single-Walled Carbon Nanotubes with Strong Interaction for Catalysis. J Am Chem Soc 2023. [PMID: 37154477 DOI: 10.1021/jacs.3c03128] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tungsten and molybdenum carbides have shown great potential in catalysis and superconductivity. However, the synthesis of ultrathin W/Mo carbides with a controlled dimension and unique structure is still difficult. Here, inspired by the host-guest assembly strategy with single-walled carbon nanotubes (SWCNTs) as a transparent template, we reported the synthesis of ultrathin (0.8-2.0 nm) W2C and Mo2C nanowires confined in SWCNTs deriving from the encapsulated W/Mo polyoxometalate clusters. The atom-resolved electron microscope combined with spectroscopy and theoretical calculations revealed that the strong interaction between the highly carbophilic W/Mo and SWCNT resulted in the anisotropic growth of carbide nanowires along a specific crystal direction, accompanied by lattice strain and electron donation to the SWCNTs. The SWCNT template endowed carbides with resistance to H2O corrosion. Different from normal modification on the outer surface of SWCNTs, such M2C@SWCNTs (M = W, Mo) provided a delocalized and electron-enriched SWCNT surface to uniformly construct the negatively charged Pd catalyst, which was demonstrated to inhibit the formation of active PdHx hydride and thus achieve highly selective semihydrogenation of a series of alkynes. This work could provide a nondestructive way to design the electron-delocalized SWCNT surface and expand the methodology in synthesizing unusual 1D ultrathin carbophilic-metal nanowires (e.g., TaC, NbC, β-W) with precise control of the anisotropy in SWCNT arrays.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guang-Jie Xia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Tianhui Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yulong Yun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kecheng Cao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Fenfa Yao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Boyuan Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang-Gang Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaqing He
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- PKU-HKUST ShenZhen-HongKong Institution, Shenzhen, 518055, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Fung KLY, Skowron ST, Hayter R, Mason SE, Weare BL, Besley NA, Ramasse QM, Allen CS, Khlobystov AN. Direct measurement of single-molecule dynamics and reaction kinetics in confinement using time-resolved transmission electron microscopy. Phys Chem Chem Phys 2023; 25:9092-9103. [PMID: 36920796 DOI: 10.1039/d2cp05183d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
We report experimental methodologies utilising transmission electron microscopy (TEM) as an imaging tool for reaction kinetics at the single molecule level, in direct space and with spatiotemporal continuity. Using reactions of perchlorocoronene (PCC) in nanotubes of different diameters and at different temperatures, we found a period of molecular movement to precede the intermolecular addition of PCC, with a stronger dependence of the reaction rate on the nanotube diameter, controlling the local environments around molecules, than on the reaction temperature (-175, 23 or 400 °C). Once initiated, polymerisation of PCC follows zero-order reaction kinetics with the observed reaction cross section σobs of 1.13 × 10-9 nm2 (11.3 ± 0.6 barn), determined directly from time-resolved TEM image series acquired with a rate of 100 frames per second. Polymerisation was shown to proceed from a single point, with molecules reacting sequentially, as in a domino effect, due to the strict conformational requirement of the Diels-Alder cycloaddition creating the bottleneck for the reaction. The reaction mechanism was corroborated by correlating structures of reaction intermediates observed in TEM images, with molecular weights measured by using mass spectrometry (MS) when the same reaction was triggered by UV irradiation. The approaches developed in this study bring the imaging of chemical reactions at the single-molecule level closer to traditional concepts of chemistry.
Collapse
Affiliation(s)
- Kayleigh L Y Fung
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Stephen T Skowron
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Ruth Hayter
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Stephen E Mason
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Benjamin L Weare
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Nicholas A Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Quentin M Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Keckwick Lane, Daresbury WA4 4AD, UK.,School of Chemical and Process Engineering and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher S Allen
- Electron Physical Sciences Imaging Centre, Diamond Light Source Ltd., Oxfordshire OX11 0DE, UK.,Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
8
|
Jordan JW, Chernov AI, Rance GA, Stephen Davies E, Lanterna AE, Alves Fernandes J, Grüneis A, Ramasse Q, Newton GN, Khlobystov AN. Host-Guest Chemistry in Boron Nitride Nanotubes: Interactions with Polyoxometalates and Mechanism of Encapsulation. J Am Chem Soc 2022; 145:1206-1215. [PMID: 36586130 PMCID: PMC9853852 DOI: 10.1021/jacs.2c10961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Boron nitride nanotubes (BNNTs) are an emerging class of molecular container offering new functionalities and possibilities for studying molecules at the nanoscale. Herein, BNNTs are demonstrated as highly effective nanocontainers for polyoxometalate (POM) molecules. The encapsulation of POMs within BNNTs occurs spontaneously at room temperature from an aqueous solution, leading to the self-assembly of a POM@BNNT host-guest system. Analysis of the interactions between the host-nanotube and guest-molecule indicate that Lewis acid-base interactions between W═O groups of the POM (base) and B-atoms of the BNNT lattice (acid) likely play a major role in driving POM encapsulation, with photoactivated electron transfer from BNNTs to POMs in solution also contributing to the process. The transparent nature of the BNNT nanocontainer allows extensive investigation of the guest-molecules by photoluminescence, Raman, UV-vis absorption, and EPR spectroscopies. These studies revealed considerable energy and electron transfer processes between BNNTs and POMs, likely mediated via defect energy states of the BNNTs and resulting in the quenching of BNNT photoluminescence at room temperature, the emergence of new photoluminescence emissions at cryogenic temperatures (<100 K), a photochromic response, and paramagnetic signals from guest-POMs. These phenomena offer a fresh perspective on host-guest interactions at the nanoscale and open pathways for harvesting the functional properties of these hybrid systems.
Collapse
Affiliation(s)
- Jack W. Jordan
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Alexander I. Chernov
- II.
Physikalisches Institut, Universität
zu Köln, Zülpicher Strasse 77, Köln 50937, Germany,Russian
Quantum Center, Skolkovo Innovation City, Moscow 121205, Russia
| | - Graham A. Rance
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,Nanoscale
& Microscale Research Centre, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - E. Stephen Davies
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Anabel E. Lanterna
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jesum Alves Fernandes
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Alexander Grüneis
- II.
Physikalisches Institut, Universität
zu Köln, Zülpicher Strasse 77, Köln 50937, Germany
| | - Quentin Ramasse
- SuperSTEM,
Laboratory, Keckwick
Lane, Daresbury WA4 4AD, U.K.,School of
Chemical and Process Engineering & School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K.
| | - Graham N. Newton
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Andrei N. Khlobystov
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,. Phone.: (044)-115-9513917
| |
Collapse
|
9
|
Fabre B, Falaise C, Cadot E. Polyoxometalates-Functionalized Electrodes for (Photo)Electrocatalytic Applications: Recent Advances and Prospects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| |
Collapse
|
10
|
Yang X, Zhu C, Zeng L, Xue W, Zhang L, Zhang L, Zhao K, Lyu M, Wang L, Zhang YZ, Wang X, Li Y, Yang F. Polyoxometalate steric hindrance driven chirality-selective separation of subnanometer carbon nanotubes. Chem Sci 2022; 13:5920-5928. [PMID: 35685796 PMCID: PMC9132071 DOI: 10.1039/d2sc01160c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Subnanometer single-chirality single-walled carbon nanotubes (SWCNTs) are of particular interest in multiple applications. Inspired by the interdisciplinary combination of redox active polyoxometalates and SWCNTs, here we report a cluster steric hindrance strategy by assembling polyoxometalates on the outer surface of subnanometer SWCNTs via electron transfer and demonstrate the selective separation of monochiral (6,5) SWCNTs with a diameter of 0.75 nm by a commercially available conjugated polymer. The combined use of DFT calculations, TEM, and XPS unveils the mechanism that selective separation is associated with tube diameter-dependent interactions between the tube and clusters. Sonication drives the preferential detachment of polyoxometalate clusters from small-diameter (6,5) SWCNTs, attributable to weak tube-cluster interactions, which enables the polymer wrapping and separation of the released SWCNTs, while strong binding clusters with large-diameter SWCNTs provide steric hindrance and block the polymer wrapping. The polyoxometalate-assisted modulation, which can be rationally customized, provides a universal and robust pathway for the separation of SWCNTs.
Collapse
Affiliation(s)
- Xusheng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chao Zhu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lianduan Zeng
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute, University of Science and Technology of China Suzhou 215000 China
| | - Weiyang Xue
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Kaitong Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Min Lyu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Lei Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yuan-Zhu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiao Wang
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Peking University Shenzhen Institute Shenzhen 518057 China
- PKU-HKUST ShenZhen-HongKong Institution Shenzhen 518057 China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
11
|
Ionization and electron excitation of C 60 in a carbon nanotube: A variable temperature/voltage transmission electron microscopic study. Proc Natl Acad Sci U S A 2022; 119:e2200290119. [PMID: 35377799 PMCID: PMC9169795 DOI: 10.1073/pnas.2200290119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The destruction of specimen molecules by an electron beam (e-beam) is either beneficial, as in mass spectrometry capitalizing on ion formation, or deleterious, as in electron microscopy. In the latter application, the e-beam not only produces the specimen image, but also causes information loss upon prolonged irradiation. However, the atomistic mechanism of such loss has been unclear. Performing single-molecule kinetic analysis of C60 dimerization in a carbon nanotube (CNT) under variable-temperature/voltage conditions, we identified three reactive species—that is, radical cation, singlet, and triplet excited states—reacting competitively as the voltage and the properties of the CNT were changed. The key enabler was in situ continuous recording of the whole reaction process, suggesting an upcoming new era of “cinematic chemistry.” There is increasing attention to chemical applications of transmission electron microscopy, which is often plagued by radiation damage. The damage in organic matter predominantly occurs via radiolysis. Although radiolysis is highly important, previous studies on radiolysis have largely been descriptive and qualitative, lacking in such fundamental information as the product structure, the influence of the energy of the electrons, and the reaction kinetics. We need a chemically well-defined system to obtain such data and have chosen as a model a variable-temperature and variable-voltage (VT/VV) study of the [2 + 2] dimerization of a van der Waals dimer [60]fullerene (C60) to C120 in a carbon nanotube (CNT), as studied for several hundred individual reaction events at atomic resolution. We report here the identification of five reaction pathways that serve as mechanistic models of radiolysis damage. Two of them occur via a radical cation of the specimen generated by specimen ionization, and three involve singlet or triplet excited states of the specimen, as initiated by electron excitation of the CNT, followed by energy transfer to the specimen. The [2 + 2] product was identified by measuring the distance between the two C60 moieties, and the mechanisms were distinguished by the pre-exponential factor and the Arrhenius activation energy—the standard protocol of chemical kinetic studies. The results illustrate the importance of VT/VV kinetic analysis in the studies of radiation damage and show that chemical ionization and electron excitation are inseparable, but different, mechanisms of radiation damage, which has so far been classified loosely under the single term “ionization.”
Collapse
|
12
|
Ahmadinasab N, Stockmann TJ. Single entity electrochemical detection of as‐prepared metallic and dielectric nanoparticle stochastic impacts in a phosphonium ionic liquid. ChemElectroChem 2022. [DOI: 10.1002/celc.202200162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nazanin Ahmadinasab
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| | - Talia Jane Stockmann
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| |
Collapse
|
13
|
Jordan JW, Cameron JM, Lowe GA, Rance GA, Fung KLY, Johnson LR, Walsh DA, Khlobystov AN, Newton GN. Stabilization of Polyoxometalate Charge Carriers via Redox-Driven Nanoconfinement in Single-Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202115619. [PMID: 34919306 PMCID: PMC9304274 DOI: 10.1002/anie.202115619] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/07/2022]
Abstract
We describe the preparation of hybrid redox materials based on polyoxomolybdates encapsulated within single-walled carbon nanotubes (SWNTs). Polyoxomolybdates readily oxidize SWNTs under ambient conditions in solution, and here we study their charge-transfer interactions with SWNTs to provide detailed mechanistic insights into the redox-driven encapsulation of these and similar nanoclusters. We are able to correlate the relative redox potentials of the encapsulated clusters with the level of SWNT oxidation in the resultant hybrid materials and use this to show that precise redox tuning is a necessary requirement for successful encapsulation. The host-guest redox materials described here exhibit exceptional electrochemical stability, retaining up to 86 % of their charge capacity over 1000 oxidation/reduction cycles, despite the typical lability and solution-phase electrochemical instability of the polyoxomolybdates we have explored. Our findings illustrate the broad applicability of the redox-driven encapsulation approach to the design and fabrication of tunable, highly conductive, ultra-stable nanoconfined energy materials.
Collapse
Affiliation(s)
- Jack W. Jordan
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Jamie M. Cameron
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Grace A. Lowe
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Graham A. Rance
- Nanoscale and Microscale Research CentreUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Lee R. Johnson
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | - Darren A. Walsh
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| | | | - Graham N. Newton
- Nottingham Applied Materials and Interfaces (NAMI) GroupGSK Carbon Neutral Laboratories for Sustainable ChemistryUniversity of NottinghamNottinghamNG7 2TUUK
| |
Collapse
|
14
|
Zhu A, Yang X, Zhang L, Wang K, Liu T, Zhao X, Zhang L, Wang L, Yang F. Selective separation of single-walled carbon nanotubes in aqueous solution by assembling redox nanoclusters. NANOSCALE 2022; 14:953-961. [PMID: 34989359 DOI: 10.1039/d1nr04019g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The selective separation of soluble and individual single-walled carbon nanotubes (SWCNTs) in aqueous solution is a key step for harnessing the extraordinary properties of these materials. Manipulating the strong van der Waals intertube interactions between the SWCNT bundles is very important in selective separation, which is a long-standing challenge. Here we reported the ability of redox polyoxometalate clusters to modulate the intertube π-π stacking interaction through electron transfer and achieved the diameter-selective separation of SWCNTs in a surfactant aqueous solution. The large-diameter SWCNTs concentrated at ∼1.3-1.4 nm were selectively separated when ∼1 nm clusters encapsulated within the tube cavity, and the dispersion of subnanometer ∼0.7-0.9 nm SWCNTs was boosted when clusters were adsorbed on the outer surface of small-diameter nanotubes. The mechanism of diameter-selective separation of SWCNTs associated with the size-dependent interaction between cluster-tubes and the steric hindrance effect of clusters was revealed by optical absorption and Raman spectroscopy. This simple method thus enables the selective separation of individual high-quality SWCNTs in aqueous solutions without harsh sonication with the potential for other separation applications.
Collapse
Affiliation(s)
- Anquan Zhu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xusheng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tianhui Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xin Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lei Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Jordan JW, Cameron JM, Lowe GA, Rance GA, Fung KLY, Johnson LR, Walsh DA, Khlobystov AN, Newton GN. Stabilization of Polyoxometalate Charge Carriers via Redox‐Driven Nanoconfinement in Single‐Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jack W. Jordan
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Jamie M. Cameron
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Grace A. Lowe
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Graham A. Rance
- Nanoscale and Microscale Research Centre University of Nottingham Nottingham NG7 2RD UK
| | | | - Lee R. Johnson
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | - Darren A. Walsh
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| | | | - Graham N. Newton
- Nottingham Applied Materials and Interfaces (NAMI) Group GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Nottingham NG7 2TU UK
| |
Collapse
|