1
|
Roque JPL, Nunes CM, Schreiner PR, Fausto R. Hydrogen Tunneling Exhibiting Unexpectedly Small Primary Kinetic Isotope Effects. Chemistry 2024; 30:e202401323. [PMID: 38709063 DOI: 10.1002/chem.202401323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Probing quantum mechanical tunneling (QMT) in chemical reactions is crucial to understanding and developing new transformations. Primary H/D kinetic isotopic effects (KIEs) beyond the semiclassical maximum values of 7-10 (room temperature) are commonly used to assess substantial QMT contributions in one-step hydrogen transfer reactions, because of the much greater QMT probability of protium vs. deuterium. Nevertheless, we report here the discovery of a reaction model occurring exclusively by H-atom QMT with residual primary H/D KIEs. 2-Hydroxyphenylnitrene, generated in N2 matrix, was found to isomerize to an imino-ketone via sequential (domino) QMT involving anti to syn OH-rotamerization (rate determining step) and [1,4]-H shift reactions. These sequential QMT transformations were also observed in the OD-deuterated sample, and unexpected primary H/D KIEs between 3 and 4 were measured at 3 to 20 K. Analogous residual primary H/D KIEs were found in the anti to syn OH-rotamerization QMT of 2-cyanophenol in a N2 matrix. Evidence strongly indicates that these intriguing isotope-insensitive QMT reactivities arise due to the solvation effects of the N2 matrix medium, putatively through coupling with the moving H/D tunneling particle. Should a similar scenario be extrapolated to conventional solution conditions, then QMT may have been overlooked in many chemical reactions.
Collapse
Affiliation(s)
- José P L Roque
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Cláudio M Nunes
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Rui Fausto
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
- Faculty Sciences and Letters, Department of Physics, Istanbul Kultur University, Bakirkoy, Istanbul, 34158, Turkey
| |
Collapse
|
2
|
Prado Merini M, Schleif T, Sander W. Heavy-Atom Tunneling in Bicyclo[4.1.0]hepta-2,4,6-trienes. Angew Chem Int Ed Engl 2023; 62:e202309717. [PMID: 37698374 DOI: 10.1002/anie.202309717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Heavy-atom tunneling limits the lifetime and observability of bicyclo[4.1.0]hepta-2,4,6-triene, a key intermediate in the rearrangement of phenylcarbene. Bicyclo[4.1.0]hepta-2,4,6-triene had been proposed as the primary intermediate of the rearrangement of phenylcarbene, but despite many efforts evaded its characterization even in cryogenic matrices. By introducing fluorine substituents into the ortho-positions of the phenyl ring of phenylcarbene, the highly strained cyclopropene 1,5-difluorobicyclo[4.1.0]hepta-2,4,6-triene becomes stable enough to be characterized in argon matrices. However, even at 3 K this cyclopropene is only metastable and rearranges via heavy-atom tunneling to the corresponding cycloheptatetraene. Calculations suggest that fluorination is necessary to slow down the tunneling rearrangement of the bicycloheptatriene. The parent bicycloheptatriene rapidly rearranges via heavy-atom tunneling and therefore cannot be detected under matrix isolation conditions.
Collapse
Affiliation(s)
- Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tim Schleif
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
3
|
Ma Z, Yan Z, Li X, Chung LW. Quantum Tunneling in Reactions Modulated by External Electric Fields: Reactivity and Selectivity. J Phys Chem Lett 2023; 14:1124-1132. [PMID: 36705472 DOI: 10.1021/acs.jpclett.2c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quantum tunneling and external electric fields (EEFs) can promote some reactions. However, the synergetic effect of an EEF on a tunneling-involving reaction and its temperature-dependence is not very clear. In this study, we extensively investigated how EEFs affect three reactions that involve hydrogen- or (ground- and excited-state) carbon-tunneling using reliable DFT, DLPNO-CCSD(T1), and variational transition-state theory methods. Our study revealed that oriented EEFs can significantly reduce the barrier and corresponding barrier width (and vice versa) through more electrostatic stabilization in transition states. These EEF effects enhance the nontunneling and tunneling-involving rates. Such EEF effects also decrease the crossover temperatures and quantum tunneling contribution, albeit with lower and thinner barriers. Moreover, EEFs can modulate and switch on/off the tunneling-driven 1,2-H migration of hydroxycarbenes under cryogenic conditions. Furthermore, our study predicts for the first time that EEF/tunneling synergy can control the chemo- or site-selectivity of one molecule bearing two similar/same reactive sites.
Collapse
Affiliation(s)
- Zhifeng Ma
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Zeyin Yan
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Xin Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| |
Collapse
|
4
|
Nunes CM, Doddipatla S, Loureiro GF, Roque JPL, Pereira NAM, Pinho e Melo TMVD, Fausto R. Differential Tunneling-Driven and Vibrationally-Induced Reactivity in Isomeric Benzazirines. Chemistry 2022; 28:e202202306. [PMID: 36066476 PMCID: PMC10092225 DOI: 10.1002/chem.202202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 11/08/2022]
Abstract
Quantum mechanical tunneling of heavy-atoms and vibrational excitation chemistry are unconventional and scarcely explored types of reactivity. Once fully understood, they might bring new avenues to conduct chemical transformations, providing access to a new world of molecules or ways of exquisite reaction control. In this context, we present here the discovery of two isomeric benzazirines exhibiting differential tunneling-driven and vibrationally-induced reactivity, which constitute exceptional results for probing into the nature of these phenomena. The isomeric 6-fluoro- and 2-fluoro-4-hydroxy-2H-benzazirines (3-a and 3'-s) were generated in cryogenic krypton matrices by visible-light irradiation of the corresponding triplet nitrene 3 2-a, which was produced by UV-light irradiation of its azide precursor. The 3'-s was found to be stable under matrix dark conditions, whereas 3-a spontaneously rearranges (τ1/2 ∼64 h at 10 and 20 K) by heavy-atom tunneling to 3 2-a. Near-IR-light irradiation at the first OH stretching overtone frequencies (remote vibrational antenna) of the benzazirines induces the 3'-s ring-expansion reaction to a seven-member cyclic ketenimine, but the 3-a undergoes 2H-azirine ring-opening reaction to triplet nitrene 3 2-a. Computations demonstrate that 3-a and 3'-s have distinct reaction energy profiles, which explain the different experimental results. The spectroscopic direct measurement of the tunneling of 3-a to 3 2-a constitutes a unique example of an observation of a species reacting only by nitrogen tunneling. Moreover, the vibrationally-induced sole activation of the most favorable bond-breaking/bond-forming pathway available for 3-a and 3'-s provides pioneer results regarding the selective nature of such processes.
Collapse
Affiliation(s)
- Cláudio M. Nunes
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - Srinivas Doddipatla
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - Gonçalo F. Loureiro
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - José P. L. Roque
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | | | | | - Rui Fausto
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| |
Collapse
|
5
|
Nunes CM, Roque JP, Doddipatla S, Wood SA, McMahon RJ, Fausto R. Simultaneous Tunneling Control in Conformer-Specific Reactions. J Am Chem Soc 2022; 144:20866-20874. [PMID: 36321916 PMCID: PMC9776521 DOI: 10.1021/jacs.2c09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present here a new example of chemical reactivity governed by quantum tunneling, which also highlights the limitations of the classical theories. The syn and anti conformers of a triplet 2-formylphenylnitrene, generated in a nitrogen matrix, were found to spontaneously rearrange to the corresponding 2,1-benzisoxazole and imino-ketene, respectively. The kinetics of both transformations were measured at 10 and 20 K and found to be temperature-independent, providing clear evidence of concomitant tunneling reactions (heavy-atom and H-atom). Computations confirm the existence of these tunneling reaction pathways. Although the energy barrier between the nitrene conformers is lower than any of the observed reactions, no conformational interconversion was observed. These results demonstrate an unprecedented case of simultaneous tunneling control in conformer-specific reactions of the same chemical species. The product outcome is impossible to be rationalized by the conventional kinetic or thermodynamic control.
Collapse
Affiliation(s)
- Cláudio M. Nunes
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal,
| | - José P.
L. Roque
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Srinivas Doddipatla
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Samuel A. Wood
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706-1322, United States
| | - Robert J. McMahon
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706-1322, United States
| | - Rui Fausto
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
6
|
Schleif T. Transformations of Strained Three-Membered Rings a Common, Yet Overlooked, Motif in Heavy-Atom Tunneling Reactions. Chemistry 2022; 28:e202201775. [PMID: 35762788 PMCID: PMC9804509 DOI: 10.1002/chem.202201775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/05/2023]
Abstract
Quantum mechanical tunneling has long been recognized as an important phenomenon when considering transformations dominated by a lightweight hydrogen atom. Tunneling of heavier atoms like carbon, initially dismissed as negligible, has seen a quickly increasing number of computationally predicted and/or experimentally confirmed examples over the last decade, thus highlighting its importance for a wide variety of reactions. However, no common structural motif has been pointed out within these seemingly unconnected examples, strongly limiting the predictability of the impact of heavy-atom tunneling on a given reaction. This Concept article will provide this perspective and showcase how the recognition of the formation and cleavage of three-membered rings as common motif can inform the prediction of and research into heavy-atom tunneling reactions.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum44780BochumGermany
- Present address: Sterling Chemistry LaboratoryYale UniversityNew HavenCT 06520USA
| |
Collapse
|
7
|
Schleif T, Prado Merini M, Henkel S, Sander W. Solvation Effects on Quantum Tunneling Reactions. Acc Chem Res 2022; 55:2180-2190. [PMID: 35730754 DOI: 10.1021/acs.accounts.2c00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A decisive factor for obtaining high yields and selectivities in organic synthesis is the choice of the proper solvent. Solvent selection is often guided by the intuitive understanding of transition state-solvent interactions. However, quantum-mechanical tunneling can significantly contribute to chemical reactions, circumventing the transition state and thus depriving chemists of their intuitive handle on the reaction kinetics. In this Account, we aim to provide rationales for the effects of solvation on tunneling reactions derived from experiments performed in cryogenic matrices.The tunneling reactions analyzed here cover a broad range of prototypical organic transformations that are subject to strong solvation effects. Examples are the hydrogen tunneling probability for the cis-trans isomerization of formic acid which is strongly reduced upon formation of hydrogen-bonded complexes and the [1,2]H-shift in methylhydroxycarbene where a change in product selectivity is predicted upon interaction with hydrogen bond acceptors.Not only hydrogen but also heavy atom tunneling can exhibit strong solvent effects. The direction of the nearly degenerate valence tautomerization between benzene oxide and oxepin was found to reverse upon formation of a halogen or hydrogen bond with ICF3 or H2O. But even in the absence of strong noncovalent interactions such as hydrogen or halogen bonding, solvation can have a decisive effect on tunneling as evidenced by the Cope rearrangement of semibullvalenes via heavy-atom tunneling. Can quantum tunneling be catalyzed? The acceleration of the ring expansion of 1H-bicyclo[3.1.0.]-hexa-3,5-dien-2-one by complexation with Lewis acids provides a proof-of-concept for tunneling catalysis.Two concepts are central for the explanation and prediction of solvation effects on tunneling phenomena: a simple approach expands the Born-Oppenheimer approximation by separating nuclear degrees of freedom into intra- and intermolecular degrees. Intermolecular movements represent the slowest motions within molecular aggregates, thus effectively freezing the position of the solvent in relation to the reactant during the tunneling process. Another useful approach is to treat reactants and products by separate single-well potentials, where the intersection represents the transition state. Thus, stabilization of the reactants via solvation should result in an increase in barrier heights and widths which in turn lowers tunneling probabilities. These simple models can predict trends in tunneling kinetics and provide a rational basis for controlling tunneling reactions via solvation.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
8
|
Fausto R, Ildiz GO, Nunes CM. IR-induced and tunneling reactions in cryogenic matrices: the (incomplete) story of a successful endeavor. Chem Soc Rev 2022; 51:2853-2872. [PMID: 35302145 DOI: 10.1039/d1cs01026c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this article, IR-induced and tunneling-driven reactions observed in cryogenic matrices are described in a historical perspective, the entangling of the two types of processes being highlighted. The story of this still ongoing fascinating scientific endeavor is presented here following closely our own involvement in the field for more than 30 years, and thus focuses mostly on our work. It is, because of this reason, also an incomplete story. Nevertheless, it considers a large range of examples, from very selective IR-induced conformational isomerizations to IR-induced bond-breaking/bond-forming reactions and successful observations of rare heavy atom tunneling processes. As a whole, this article provides a rather general overview of the major progress achieved in the field.
Collapse
Affiliation(s)
- Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Gulce O Ildiz
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal. .,Department of Physics, Faculty of Sciences and Letters, Istanbul Kultur University, 34158 Bakirkoy, Istanbul, Turkey
| | - Cláudio M Nunes
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|