1
|
Lee M, Lim J, Choi E, Soufiani AM, Lee S, Ma FJ, Lim S, Seidel J, Seo DH, Park JS, Lee W, Lim J, Webster RF, Kim J, Wang D, Green MA, Kim D, Noh JH, Hao X, Yun JS. Highly Efficient Wide Bandgap Perovskite Solar Cells With Tunneling Junction by Self-Assembled 2D Dielectric Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402053. [PMID: 39148282 DOI: 10.1002/adma.202402053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/21/2024] [Indexed: 08/17/2024]
Abstract
Reducing non-radiative recombination and addressing band alignment mismatches at interfaces remain major challenges in achieving high-performance wide-bandgap perovskite solar cells. This study proposes the self-organization of a thin two-dimensional (2D) perovskite BA2PbBr4 layer beneath a wide-bandgap three-dimensional (3D) perovskite Cs0.17FA0.83Pb(I0.6Br0.4)3, forming a 2D/3D bilayer structure on a tin oxide (SnO2) layer. This process is driven by interactions between the oxygen vacancies on the SnO2 surface and hydrogen atoms of the n-butylammonium cation, aiding the self-assembly of the BA2PbBr4 2D layer. The 2D perovskite acts as a tunneling layer between SnO2 and the 3D perovskite, neutralizing the energy level mismatch and reducing non-radiative recombination. This results in high power conversion efficiencies of 21.54% and 19.16% for wide-bandgap perovskite solar cells with bandgaps of 1.7 and 1.8 eV, with open-circuit voltages over 1.3 V under 1-Sun illumination. Furthermore, an impressive efficiency of over 43% is achieved under indoor conditions, specifically under 200 lux white light-emitting diode light, yielding an output voltage exceeding 1 V. The device also demonstrates enhanced stability, lasting up to 1,200 hours.
Collapse
Affiliation(s)
- Minwoo Lee
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jihoo Lim
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Eunyoung Choi
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Arman Mahboubi Soufiani
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Division Solar Energy, 12489, Berlin, Germany
| | - Seungmin Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Fa-Jun Ma
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean Lim
- Electron Microscope Unit, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jan Seidel
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dong Han Seo
- Energy Materials & Devices, Korea Institute of Energy Technology (KENTECH), Jeollanam-do, Naju, 58330, Republic of Korea
| | - Ji-Sang Park
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wonjong Lee
- Department of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongchul Lim
- Department of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Richard Francis Webster
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Electron Microscope Unit, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jincheol Kim
- New & Renewable Research Center Korea, Electronics Technology Institute, Seong-Nam, 13509, Republic of Korea
- School of Engineering, Macquarie University Sustainable Energy Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Danyang Wang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Martin A Green
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dohyung Kim
- Department of Advanced Materials Engineering, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jun Hong Noh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Green School Graduate School of Energy and Environment, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Xiaojing Hao
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jae Sung Yun
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Computer Science and Electronic Engineering, Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
2
|
Qi SC, Ding YH, Ding ZP, Zheng L, Zhang MJ, Li YJ, Liu XQ, Sun LB. Positively Photo-Responsive Adsorption Over Binary Copper Porphyrin Framework and Graphene Film Sorbents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406621. [PMID: 39344540 DOI: 10.1002/smll.202406621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Photo-responsive adsorption has emerged as a vibrant area because it provides a promising route to reduce the energy consumption of the traditional adsorption separation. However, the current methodology to fabricate photo-responsive sorbents is still subject to the photo-deforming molecular units. In this study, a new initiative of photo-dissociated electron-hole pairs is proposed to generate amazing adsorption activity, and prove its feasibility. Employing CuPP [PP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework nanosheets compounded with graphene, binary film (BF) sorbents are successfully fabricated. The paradigmatic BF nanostructure brings about efficiently photo-excited electron-hole pairs with durable enough lifetime to meet the needs of microscopic adsorption equilibrium, which ultimately alters the electron density distribution of adsorption surface, and thus markedly modulates the adsorption activity. Therefore, an amazing photo-enhanced adsorption capability for the index gas CO can be gotten. Once exposed to the visible-light at 420 nm, the CO adsorption capacity (0 °C, 1 bar) is risen from 0.23 mmol g-1 in the darkness to 1.66 mmol g-1, changed by + 622%. This is essentially different from majority of current photo-responsive sorbents based on photo-deforming molecular units, of which adsorption capability is only decreased with photo-induction, and the maximum rate of change reported is just -54%.
Collapse
Affiliation(s)
- Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yu-Hang Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhang-Peng Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Li Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Meng-Jun Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yu-Jiao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
Gao Z, Wang J, Xiao H, Abdel-Shakour M, Liu T, Zhang S, Huang J, Xue DJ, Yang S, Meng X. Adhesion-Controlled Heterogeneous Nucleation of Tin Halide Perovskites for Eco-Friendly Indoor Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403413. [PMID: 39011771 DOI: 10.1002/adma.202403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Indexed: 07/17/2024]
Abstract
The rapid development of the Internet of Things (IoT) has accelerated the advancement of indoor photovoltaics (IPVs) that directly power wireless IoT devices. The interest in lead-free perovskites for IPVs stems from their similar optoelectronic properties to high-performance lead halide perovskites, but without concerns about toxic lead leakage in indoor environments. However, currently prevalent lead-free perovskite IPVs, especially tin halide perovskites (THPs), still exhibit inferior performance, arising from their uncontrollable crystallization. Here, a novel adhesive bonding strategy is proposed for precisely regulating heterogeneous nucleation kinetics of THPs by introducing alkali metal fluorides. These ionic adhesives boost the work of adhesion at the buried interface between substrates and perovskite film, subsequently reducing the contact angle and energy barrier for heterogeneous nucleation, resulting in high-quality THP films. The resulting THP solar cells achieve an efficiency of 20.12% under indoor illumination at 1000 lux, exceeding all types of lead-free perovskite IPVs and successfully powering radio frequency identification-based sensors.
Collapse
Affiliation(s)
- Zhen Gao
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junfang Wang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbin Xiao
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muhammad Abdel-Shakour
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Tianhua Liu
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Zhang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Huang
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding-Jiang Xue
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xiangyue Meng
- School of Optoelectronics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Han M, Zhou R, Chen G, Li Q, Li P, Sun C, Zhang Y, Song Y. Unveiling the Potential of Two-Terminal Perovskite/Organic Tandem Solar Cells: Mechanisms, Status, and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402143. [PMID: 38609159 DOI: 10.1002/adma.202402143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Perovskite/organic tandem solar cells (PO-TSCs) demonstrate exceptional suitability for emerging applications such as building-integrated photovoltaics, wearable devices, and greenhouse farming. By leveraging the distinctive attributes of perovskite and organic materials, which encompass expanded solar spectrum utilization, chemically benign solubility, and soft nature, PO-TSCs position themselves as ideal candidates for high-performance semi-transparent photovoltaics (ST-PVs). Despite these advantages, their development significantly lags behind other perovskite-based counterparts, such as perovskite/perovskite, perovskite/silicon, and perovskite/Cu(In, Ga)Se2. To address existing challenges and unlock the full potential of PO-TSCs, an exploration of the fundamental mechanisms governing tandem photovoltaic devices is embarked. Delving into critical aspects such as charge generation/separation, energy level alignment, and material choices becomes pivotal for optimizing PO-TSC performance. The investigation of monolithic two-terminal PO-TSCs offers insights into achievements and barriers, recognizing the competitive landscape with other TSC counterparts. Further scrutiny of perovskite absorbers and organic absorbers in TSCs reveals strategies aimed at enhancing stability and efficiency. The discussion extends to interconnection layers, elucidating their role in optimizing light transmission and balancing carrier recombination. In conclusion, a compelling outlook on the dynamic landscape of PO-TSCs is presented, highlighting the remarkable efficiency progression and signaling their potential to revolutionize solar energy harvesting technologies.
Collapse
Affiliation(s)
- Mengqi Han
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ruimin Zhou
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ge Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qin Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengwei Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chenkai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yiqiang Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Jafarzadeh F, Castriotta LA, Legrand M, Ory D, Cacovich S, Skafi Z, Barichello J, De Rossi F, Di Giacomo F, Di Carlo A, Brown T, Brunetti F, Matteocci F. Flexible, Transparent, and Bifacial Perovskite Solar Cells and Modules Using the Wide-Band Gap FAPbBr 3 Perovskite Absorber. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17607-17616. [PMID: 38557000 DOI: 10.1021/acsami.4c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Perovskite solar cells (PSCs) offer impressive performance and flexibility, thanks to their simple, low-temperature deposition methods. Their band gap tunability allows for a wide range of applications, transitioning from opaque to transparent devices. This study introduces the first flexible, bifacial PSCs using the FAPbBr3 perovskite. We investigated the impact of optimizing electron and hole transport layers on the cells' bifaciality, transparency, and stability. PSCs achieved a maximum power conversion efficiency (PCE) of 6.8 and 18.7% under 1 sun and indoor light conditions (1200 lx), respectively, showing up to 98% bifaciality factor and an average visible transmittance (AVT) of 55%. Additionally, a P1-P2-P3 laser ablation scheme has been developed on the flexible poly(ethylene terephthalate) (PET) substrate for perovskite solar modules showing a PCE of 4.8% and high geometrical fill factor (97.8%). These findings highlight the potential of flexible, bifacial PSCs for diverse applications such as building-integrated photovoltaics (BIPV), agrivoltaics, automotive technology, wearable sensors, and Internet of things (IoT).
Collapse
Affiliation(s)
- Farshad Jafarzadeh
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Luigi Angelo Castriotta
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Marie Legrand
- Institut Photovoltaïque d'Ile-de-France (IPVF), UMR 9006, CNRS, Ecole Polytechnique, IP Paris, Chimie Paristech, PSL, 91120 Palaiseau, France
| | - Daniel Ory
- Électricité de France (EDF), R&D, 18 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - Stefania Cacovich
- Institut Photovoltaïque d'Ile-de-France (IPVF), UMR 9006, CNRS, Ecole Polytechnique, IP Paris, Chimie Paristech, PSL, 91120 Palaiseau, France
| | - Zeynab Skafi
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Jessica Barichello
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Francesca De Rossi
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Francesco Di Giacomo
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Aldo Di Carlo
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- CNR-ISM Istituto di Struttura della Materia, via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Thomas Brown
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Francesca Brunetti
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Fabio Matteocci
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
6
|
Rahman MM. A Comprehensive Review on Perovskite Solar Cells Integrated Photo-supercapacitors and Perovskites-Based Electrochemical Supercapacitors. CHEM REC 2024; 24:e202300183. [PMID: 37642262 DOI: 10.1002/tcr.202300183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Perovskite solar cells (PSCs) have rapidly become a prevalent photovoltaic technology owing to their simple structure, low processing cost, and remarkable increase in solar-to-electric power conversion efficiency (PCE). However, the intermittent nature of solar radiation induces some technical and financial challenges for its practical applications as a reliable power source. To address this issue, the integration of PSCs with supercapacitors (SCs) in the form of integrated photo-supercapacitors (IPSs) has gathered significant attention. This integration can balance energy availability and demand, reduce energy wastage, and stabilize power output for portable and wearable electronics. Meanwhile, the excellent optoelectronic properties with mixed electronic and ionic conductivity of metal halide perovskites (MHPs) have expanded their application as electrode and electrolyte materials for SCs and photo-supercapacitors (PSs) applications. This review provides an all-inclusive summary of the current state-of-the-art research progress of PSCs-IPSs and MHPs-based SCs and PSs by highlighting their basics and integration approaches. It also discusses the challenges and prospects of these materials and technologies.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, South Korea
| |
Collapse
|
7
|
Zhang B, Zhang R, Li Y, Wang S, Zhang M, Xing F. Deploying photovoltaic arrays in degraded grasslands is a promising win-win strategy for promoting grassland restoration and resolving land use conflicts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119495. [PMID: 37918234 DOI: 10.1016/j.jenvman.2023.119495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
Photovoltaic (PV) facility installation occupying large land areas gradually expands into vast grasslands. The construction of PV arrays should be synchronized with the establishment of fences to prevent grazing and human disturbance. However, it is still being determined whether deploying PV arrays in degraded grasslands has better restoration effects than common grassland fencing, achieving a win-win for grassland restoration and resolving land use conflicts. Here, we investigated soil and vegetation characteristics to assess the different impacts of PV arrays, fencing, and free-grazing on restoration in the degraded grassland in the Songnen Plain, Northeast China. The results showed that the PV arrays and fencing significantly improved soil and vegetation parameters, with the PV arrays dramatically increasing carbon and nitrogen storage in plants (including aboveground, underground, and litter) and soil. The mixed linear model analysis showed that the experimental zones had a significant influence on the carbon and nitrogen pools in plants and soil. Compared to single grassland fencing, the PV arrays significantly improved the carbon storage of plants and soil, with increases of 30.19% and 17.93%, respectively. Furthermore, there was an observed increase of 9.44% and 0.75% in the nitrogen storage. Soil pH and bulk density were the main factors influencing soil carbon and nitrogen storage in the fenced zones. Increasing soil moisture in the PV array zones resulted in higher soil carbon and nitrogen storage than in the fenced zones. The PV arrays showed a 78.61% increase in annual mean soil carbon sequestration rates compared to the grassland restoration measures reported in previous studies. Overall, the PV array zone superimposed the dual effects of PV panels and their fences, with the ecological indicators showing a greater positive influence than common grassland fencing. Our results suggested that deploying PV arrays was a win-win strategy for promoting grassland restoration and resolving land use conflicts in degraded grasslands.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China
| | - Ruohui Zhang
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China
| | - You Li
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China
| | - Shiwen Wang
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China
| | - Minghui Zhang
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China
| | - Fu Xing
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, 130024, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China.
| |
Collapse
|
8
|
Yadagiri B, Kumar Kaliamurthy A, Yoo K, Cheol Kang H, Ryu J, Kwaku Asiam F, Lee J. Molecular Engineering of Photosensitizers for Solid-State Dye-Sensitized Solar Cells: Recent Developments and Perspectives. ChemistryOpen 2023; 12:e202300170. [PMID: 37874016 PMCID: PMC10695739 DOI: 10.1002/open.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
Dye-sensitized solar cells (DSSCs) are a feasible alternative to traditional silicon-based solar cells because of their low cost, eco-friendliness, flexibility, and acceptable device efficiency. In recent years, solid-state DSSCs (ss-DSSCs) have garnered much interest as they can overcome the leakage and evaporation issues of liquid electrolyte systems. However, the poor morphology of solid electrolytes and their interface with photoanodes can minimize the device performance. The photosensitizer/dye is a critical component of ss-DSSCs and plays a vital role in the device's overall performance. In this review, we summarize recent developments and performance of photosensitizers, including mono- and co-sensitization of ruthenium, porphyrin, and metal-free organic dyes under 1 sun and ambient/artificial light conditions. We also discuss the various requirements that efficient photosensitizers should satisfy and provide an overview of their historical development over the years.
Collapse
Affiliation(s)
- Bommaramoni Yadagiri
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Ashok Kumar Kaliamurthy
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Kicheon Yoo
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Hyeong Cheol Kang
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Junyeong Ryu
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Francis Kwaku Asiam
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Jae‐Joon Lee
- Research Center for Photoenergy Harvesting and Conversion Technology (phct)Department of Energy Materials and EngineeringDongguk UniversitySeoul04620Republic of Korea
| |
Collapse
|
9
|
Roth AN, Chen Y, Santhiran A, Opare-Addo J, Gi E, Smith EA, Rossini AJ, Vela J. Designing complex Pb 3SBr xI 4-x chalcohalides: tunable emission semiconductors through halide-mixing. Chem Sci 2023; 14:12331-12338. [PMID: 37969605 PMCID: PMC10631247 DOI: 10.1039/d3sc02733c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
Chalcohalides are desirable semiconducting materials due to their enhanced light-absorbing efficiency and stability compared to lead halide perovskites. However, unlike perovskites, tuning the optical properties of chalcohalides by mixing different halide ions into their structure remains to be explored. Here, we present an effective strategy for halide-alloying Pb3SBrxI4-x (1 ≤ x ≤ 3) using a solution-phase approach and study the effect of halide-mixing on structural and optical properties. We employ a combination of X-ray diffraction, electron microscopy, and solid-state NMR spectroscopy to probe the chemical structure of the chalcohalides and determine mixed-halide incorporation. The absorption onsets of the chalcohalides blue-shift to higher energies as bromide replaces iodide within the structure. The photoluminescence maxima of these materials mimics this trend at both the ensemble and single particle fluorescence levels, as observed by solution-phase and single particle fluorescence microscopy, respectively. These materials exhibit superior stability against moisture compared to traditional lead halide perovskites, and IR spectroscopy reveals that the chalcohalide surfaces are terminated by both amine and carboxylate ligands. Electronic structure calculations support the experimental band gap widening and volume reduction with increased bromide incorporation, and provide useful insight into the likely atomic coloring patterns of the different mixed-halide compositions. Ultimately, this study expands the range of tunability that is achievable with chalcohalides, which we anticipate will improve the suitability of these semiconducting materials for light absorbing and emission applications.
Collapse
Affiliation(s)
- Alison N Roth
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Yunhua Chen
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Anuluxan Santhiran
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Jemima Opare-Addo
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Eunbyeol Gi
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Emily A Smith
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Aaron J Rossini
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Javier Vela
- US DOE Ames National Laboratory Ames Iowa 50010 USA
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| |
Collapse
|
10
|
Huang L, Lou YH, Wang ZK. Buried Interface Passivation: A Key Strategy to Breakthrough the Efficiency of Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302585. [PMID: 37196420 DOI: 10.1002/smll.202302585] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Owing to the merits of low cost and high power conversion efficiency (PCE), perovskite solar cells (PSCs) have become the best candidate to replace the commonly used silicon solar cells. However, PSCs have been slow to enter the market for a number of reasons, including poor stability, high toxicity, and rigorous preparation process. Passivation strategies including surface passivation and bulk passivation have been successfully applied to improve the device performance of PSCs. The passivation of the defects at the buried interface, which is regarded as a key strategy to breakthrough the device efficiency and stability of PSCs in the future, is ongoing with challenge. Herein, in detail the recent passivation of the buried interface is introduced from three aspects: perovskite layer, buried interlayer, and transport layer. The passivation effect of the buried interface is clearly demonstrated through three categories of salts, organics, and 2D materials. In addition, the transport layer is classified into electron transport layer (ETL) and hole transport layer (HTL). These classifications can help to have a clear understanding of substances which generate passivating effect and guide the continuous promotion of the follow-up buried interface passivating work.
Collapse
Affiliation(s)
- Lei Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, China
| | - Zhao-Kui Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
11
|
Bellchambers P, Henderson C, Abrahamczyk S, Choi S, Lee JK, Hatton RA. High Performance Transparent Silver Grid Electrodes for Organic Photovoltaics Fabricated by Selective Metal Condensation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300166. [PMID: 36912419 DOI: 10.1002/adma.202300166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Indexed: 05/26/2023]
Abstract
Silver grid electrodes on glass and flexible plastic substrates with performance that exceeds that of commercial indium-tin oxide (ITO) coated glass are reported and show their suitability as a drop-in replacement for ITO glass in solution-processed organic photovoltaics (OPVs). When supported on flexible plastic substrates these electrodes are stable toward repeated bending through a small radius of curvature over tens of thousands of cycles. The grid electrodes are fabricated by the unconventional approach of condensation coefficient modulation using a perfluorinated polymer shown to be far superior to the other compounds used for this purpose to date. The very narrow line width and small grid pitch that can be achieved also open the door to the possibility of using grid electrodes in OPVs without a conducting poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate) (PEDOT: PSS) layer to span the gaps between grid lines.
Collapse
Affiliation(s)
| | - Charlie Henderson
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Seungsoo Choi
- Program in Environment and Polymer Engineering, Inha University, Incheon, 22212, South Korea
| | - Jin-Kyun Lee
- Program in Environment and Polymer Engineering, Inha University, Incheon, 22212, South Korea
- Department of Polymer Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Ross A Hatton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
12
|
Zhu X, Xu J, Cen H, Wu Z, Dong H, Xi J. Perspectives for the conversion of perovskite indoor photovoltaics into IoT reality. NANOSCALE 2023; 15:5167-5180. [PMID: 36846869 DOI: 10.1039/d2nr07022g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a competitive candidate for powering low-power terminals in Internet of Things (IoT) systems, indoor photovoltaic (IPV) technology has attracted much attention due to its effective power output under indoor light illumination. One such emerging photovoltaic technology, perovskite cell, has become a hot topic in the field of IPVs due to its outstanding theoretical performance limits and low manufacturing costs. However, several elusive issues remain limiting their applications. In this review, the challenges for perovskite IPVs are discussed in view of the bandgap tailoring to match indoor light spectra and the defect trapping regulation throughout the devices. Then, we summarize up-to-date perovskite cells, highlighting advanced strategies such as bandgap engineering, film engineering and interface engineering to enhance indoor performance. The investigation of indoor applications of large and flexible perovskite cells and integrated devices powered by perovskite cells is exhibited. Finally, the perspectives for the perovskite IPV field are provided to help facilitate the further improvement of indoor performance.
Collapse
Affiliation(s)
- Xinyi Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
| | - Jie Xu
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hanlin Cen
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jun Xi
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, 710049, China.
| |
Collapse
|
13
|
Bahadur J, Ryu J, Pandey P, Cho S, Cho JS, Kang DW. In situ crystal reconstruction strategy-based highly efficient air-processed inorganic CsPbI 2Br perovskite photovoltaics for indoor, outdoor, and switching applications. NANOSCALE 2023; 15:3850-3863. [PMID: 36723205 DOI: 10.1039/d2nr06230e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
All-inorganic CsPbI2Br (CPIB) perovskite has gained strong attention due to their favorable optoelectronic properties for photovoltaics. However, solution-processed CPIB films suffer from poor morphology due to the rapid crystallization process, which must be resolved for desirable photovoltaic performance. We introduced phenethylammonium iodide (PEAI) as an additive into a perovskite precursor that effectively controls the crystallization kinetics to construct the preferred quality α-CPIB film under ambient conditions. Various photophysical and structural characterization studies were performed to investigate the microstructural, morphological, and optoelectronic properties of the CPIB and PEAI-assisted perovskite films. We found that PEAI plays a vital role in decreasing pinholes, ensuring precise crystal growth, enhancing the crystallinity, improving the uniformity, and tailoring the film morphology by retarding the crystallization process, resulting in an improved device performance. The device based on the optimized PEAI additive (0.8 mg) achieved a respectably high power conversion efficiency (PCE) of 17.40% compared to the CPIB perovskite solar cell (PSC; 15.75%). Moreover, the CPIB + 0.8 mg PEAI PSC retained ∼87.25% of its original PCE, whereas the CPIB device retained ∼66.90% of the initial PCE after aging in a dry box at constant heating (85 °C) over 720 h, which revealed high thermal stability. Furthermore, the indoor photovoltaic performance under light-emitting diode (LED) lighting conditions (3200 K, 1000 lux) was investigated, and the CPIB + 0.8 mg PEAI PSC showed a promising PCE of 26.73% compared to the CPIB device (19.68%). In addition, we developed a switching function by employing the optimized PSC under LED lighting conditions, demonstrating the practical application of constructed indoor PSCs.
Collapse
Affiliation(s)
- Jitendra Bahadur
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea.
| | - Jun Ryu
- Department of Smart Cities, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Padmini Pandey
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea.
| | - SungWon Cho
- Department of Smart Cities, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Jung Sang Cho
- Department of Engineering Chemistry, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju-si, Chungbuk 361-763, Republic of Korea
| | - Dong-Won Kang
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea.
- Department of Smart Cities, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
14
|
Sajid S, Alzahmi S, Salem IB, Obaidat IM. Perovskite-Surface-Confined Grain Growth for High-Performance Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3352. [PMID: 36234480 PMCID: PMC9565253 DOI: 10.3390/nano12193352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The conventional post-annealing (CPA) process is frequently employed and regarded a crucial step for high-quality perovskite thin-films. However, most researchers end up with unwanted characteristics because controlling the evaporation rate of perovskite precursor solvents during heat treatment is difficult. Most perovskite thin-films result in rough surfaces with pinholes and small grains with multiple boundaries, if the evaporation of precursor solvents is not controlled in a timely manner, which negatively affects the performance of perovskite solar cells (PSCs). Here, we present a surface-confined post-annealing (SCPA) approach for controlling the evaporation of perovskite precursor solvents and promoting crystallinity, homogeneity, and surface morphology of the resulting perovskites. The SCPA method not only modulates the evaporation of residual solvents, resulting in pinhole-free thin-films with large grains and fewer grain boundaries, but it also reduces recombination sites and facilitates the transport of charges in the resulting perovskite thin-films. When the method is changed from CPA to SCPA, the power conversion efficiency of PSC improves from 18.94% to 21.59%. Furthermore, as compared to their CPA-based counterparts, SCPA-based PSCs have less hysteresis and increased long-term stability. The SCPA is a potentially universal method for improving the performance and stability of PSCs by modulating the quality of perovskite thin-films.
Collapse
Affiliation(s)
- Sajid Sajid
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Imen Ben Salem
- College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Ihab M. Obaidat
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
15
|
Karakuş MÖ, Yakışıklıer ME, Delibaş A, Çetin H. A roadmap for hydrogel-based quasi-solid electrolyte preparation for use in dye-sensitized solar cell. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Li Y, Li R, Lin Q. Engineering the Non-Radiative Recombination of Mixed-Halide Perovskites with Optimal Bandgap for Indoor Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202028. [PMID: 35616062 DOI: 10.1002/smll.202202028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Indoor photovoltaics have attracted increasing attention, since they can provide sustainable energy through the recycling of photon energy from household dim lighting. However, solar cells exhibiting high performance under sunlight may not perform well under indoor light conditions, mainly due to the mismatch of the irradiance spectrum. In particular, most of the indoor light sources emit visible photons with negligible near-infrared irradiance. According to the detailed balance theory, the optimal bandgap for indoor photovoltaics should be relatively larger, considering the trade-off between photocurrent and photovoltage losses. In this work, a systematic comparison of the theoretical limits of the conventional and indoor photovoltaics is presented. Then the non-radiative recombination losses are reduced by a synergetic treatment with Pb(SCN)2 and PEABr, resulting relatively high open circuit voltage of 1.29 V and power conversion efficiency of 17.32% under 1 sun illumination. Furthermore, the devices are fully characterized under weak indoor light (1000 lux, 4000 K LED) achieving a high efficiency of 37.18%, which is promising for real applications.
Collapse
Affiliation(s)
- Yanyan Li
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruiming Li
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Suzhou Institute of Wuhan University, Suzhou, 255123, P. R. China
| | - Qianqian Lin
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Suzhou Institute of Wuhan University, Suzhou, 255123, P. R. China
| |
Collapse
|
17
|
Opoku H, Hyeon Lee J, Won Shim J, Woong Jo J. Perovskite Photovoltaics for Artificial Light Harvesting. Chemistry 2022; 28:e202200266. [DOI: 10.1002/chem.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Henry Opoku
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct) Dongguk University 30 Pildong-ro, 1-gil, Jung-gu Seoul 04620 Republic of Korea
| | - Ji Hyeon Lee
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct) Dongguk University 30 Pildong-ro, 1-gil, Jung-gu Seoul 04620 Republic of Korea
| | - Jae Won Shim
- Department of Electrical Engineering Korea University Seoul 02481 Republic of Korea
| | - Jea Woong Jo
- Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct) Dongguk University 30 Pildong-ro, 1-gil, Jung-gu Seoul 04620 Republic of Korea
| |
Collapse
|
18
|
Mombeshora ET, Muchuweni E, Garcia-Rodriguez R, Davies ML, Nyamori VO, Martincigh BS. A review of graphene derivative enhancers for perovskite solar cells. NANOSCALE ADVANCES 2022; 4:2057-2076. [PMID: 36133440 PMCID: PMC9418678 DOI: 10.1039/d1na00830g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/20/2022] [Indexed: 05/22/2023]
Abstract
Due to the finite nature, health and environmental hazards currently associated with the use of fossil energy resources, there is a global drive to hasten the development and deployment of renewable energy technologies. One such area encompasses perovskite solar cells (PSCs) that have shown photoconversion efficiencies (PCE) comparable to silicon-based photovoltaics, but their commercialisation has been set back by short-term stability and toxicity issues, among others. A tremendous potential to overcome these drawbacks is presented by the emerging applications of graphene derivative-based materials in PSCs as substitutes or components, composites with other functional materials, and enhancers of charge transport, blocking action, exciton dissociation, substrate coverage, sensitisation and stabilisation. This review aims to illustrate how these highly capable carbon-based materials can advance PSCs by critically outlining and discussing their current applications and strategically identifying prospective research avenues. The reviewed works show that graphene derivatives have great potential in boosting the performance and stability of PSCs through morphological modifications and compositional engineering. This can drive the sustainability and commercial viability aspects of PSCs.
Collapse
Affiliation(s)
- Edwin T Mombeshora
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Edigar Muchuweni
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Rodrigo Garcia-Rodriguez
- SPECIFIC IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University Swansea UK
| | - Matthew L Davies
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
- SPECIFIC IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University Swansea UK
| | - Vincent O Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
19
|
Alberti A. Mesoporous Materials and Nanoscale Phenomena in Hybrid Photovoltaics. NANOMATERIALS 2022; 12:nano12081307. [PMID: 35458013 PMCID: PMC9030743 DOI: 10.3390/nano12081307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Alessandra Alberti
- Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), 95121 Catania, Italy
| |
Collapse
|
20
|
Wang M, Wang Q, Zhao J, Xu Y, Wang H, Zhou X, Yang S, Ci Z, Jin Z. Low-Trap-Density CsPbX 3 Film for High-Efficiency Indoor Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11528-11537. [PMID: 35192322 DOI: 10.1021/acsami.1c25207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The continuous advancement of the Internet of Things (IoT) and photovoltaic technology has promoted the development of indoor photovoltaics (IPVs) that powers wireless devices. Nowadays, the CsPbX3 perovskite has received widespread attention because of its high power conversion efficiency (PCE) in an indoor environment and suitable band gap for IPVs. In this work, we regulated the thickness of the photoactive layer (to optimize the carrier transport process without affecting indoor absorption) and bromine substitution (to adjust the band gap and improve the quality of the film) to reduce trap-assisted carrier recombination. A CsPbI2.7Br0.3 perovskite cell with excellent performance was obtained, which is superior to c-Si cells in a low-light environment. The optimized device achieved PCE values of 32.69 and 33.11% under a 1000 lux fluorescent lamp and white light-emitting diode (WLED) illumination. The J-V hysteresis of the device is also effectively suppressed. Moreover, it has a steady-state output power of 7.76 μW (0.09 cm2, and can be enhanced by enlarging the areas), which can meet the consumption of many small wireless devices. It is worth noting that the optimized device has excellent applicability to be used in a complex indoor environment.
Collapse
Affiliation(s)
- Meng Wang
- School of Physical Science and Technology & School of Materials and Energy & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Qian Wang
- School of Physical Science and Technology & School of Materials and Energy & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Jing Zhao
- School of Physical Science and Technology & School of Materials and Energy & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Youkui Xu
- School of Physical Science and Technology & School of Materials and Energy & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & School of Materials and Energy & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xufeng Zhou
- School of Material Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Siwei Yang
- Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Chang Ning Road, Shanghai 200050, China
| | - Zhipeng Ci
- School of Physical Science and Technology & School of Materials and Energy & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & School of Materials and Energy & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Ambient Light Energy Harvesting and Numerical Modeling of Non-Linear Phenomena. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ambient light is an energy-harvesting source that can recharge a battery with less human interaction and can be used to prolong the operational time of the Internet of Things, e.g., mobile phones and wearable devices. Available light energy is insufficient for directly charging mobile phones and wearable devices, but it can supplement batteries to power some low-energy-consuming critical functions of the wearable device, especially in low-power consumption wearables. However, in an emergency scenario when the battery’s operational time is not sufficient or a battery charging source is unavailable, a solution is required to extend the limited battery span for mobile and wearable devices. This work presents the bottlenecks and new advancements in the commercialization of photovoltaics for smartphones and wearable technologies based on ambient light energy harvesting. A new technique, in which a smartphone cover is used as a solar concentrator to enhance light energy harvesting associated with algorithms, is experimentally demonstrated. Our research outcomes show that solar concentrators can improve light intensity by approximately 1.85 and 1.43 times at 90° and 71° angles, respectively, thus harvesting more ambient light energy at 2500 lx light intensity in a typical office environment. Type-1 PV and Type-2 PV cells were able to charge the additional battery in 8 h under 2500 lx lighting intensity in an indoor office environment. A system and logic algorithm technique is presented to efficiently transfer harvested light energy to perform low-energy consumption operations in a device, in order to improve the operational time of the device’s battery.
Collapse
|
22
|
Alberti A, Smecca E, Valastro S, Deretzis I, Mannino G, Bongiorno C, Fisicaro G, La Magna A. Perovskite Solar Cells from the viewpoint of innovation and sustainability. Phys Chem Chem Phys 2022; 24:21549-21566. [DOI: 10.1039/d2cp02891c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Innovation is seriously investing around the themes of climate change and sustainability. Commercial Photovoltaic (PV) has egregiously contributed to getting to 22.1% share of the gross final energy consumption in...
Collapse
|