1
|
Zhang M, Armes SP, An Z. Synthesis of Star Polymers with Ultrahigh Molecular Weights and Tunable Dispersities via Photoiniferter Polymerization. ACS Macro Lett 2025:306-312. [PMID: 39981946 DOI: 10.1021/acsmacrolett.5c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Simultaneous control over macromolecular chain topology, molecular weight, and dispersity is an important synthetic goal in polymer chemistry. The synthesis of well-defined poly(methyl acrylate) star polymers with ultrahigh molecular weights (>106 g mol-1) and tunable dispersities is realized for the first time via blue light-controlled photoiniferter polymerization using a tetrafunctional switchable RAFT agent (SRA4). The spectroscopic properties and polymerization activity of SRA4 can be reversibly tuned by addition of acid/base. For example, protonation of SRA4 with 4-toluenesulfonic acid (TsOH) leads to enhanced UV-visible light absorption, a faster polymerization rate, and a lower dispersity for the resulting star polymer. Star polymers were prepared with predicted molecular weights (Mn ≈ 80-1550 kg mol-1) and tunable dispersities (Đ ≈ 1.8-1.2) when targeting degrees of polymerization in the range of 1000-20000 in the presence of varying amounts of TsOH. High end-group fidelity for such star polymers was confirmed by one-pot chain extension experiments, which afforded a series of pseudoblock copolymers with controlled dispersities. Finally, rotational rheology was used to examine the effect of molecular weight, dispersity, and chain topology (whether linear or star-shaped) on solution viscosity.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Steven P Armes
- School of Mathematical and Physical Sciences, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Ataie S, Malmir A, Scott SS, Goettel JT, Clemens SN, Morrison DJ, Mackie C, Heyne B, Hatzikiriakos SG, Schafer LL. Hydroaminoalkylation for Amine Functionalization of Vinyl-Terminated Polyethylene Enables Direct Access to Responsive Functional Materials. Angew Chem Int Ed Engl 2024; 63:e202410154. [PMID: 39473397 DOI: 10.1002/anie.202410154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 11/26/2024]
Abstract
While functionalized polyethylenes (PEs) exhibit valuable characteristics, the constraints of existing synthetic approaches limit the variety of readily incorporated functionality. New methods to generate functionalized PEs are required to afford new applications of this common material. We report 100 % atom economic tantalum-catalyzed hydroaminoalkylation of vinyl-terminated polyethylene (VTPE) as a method to produce amine-terminated PE. VTPEs with molecular weights between 2200-16800 g/mol are successfully aminated using solvent-free conditions. Our catalytic system is efficient for the installation of both aromatic and aliphatic amines, and can be carried out on multigram scale. The associating amine functional groups afford modified material properties, as measured by water contact angle, differential scanning calorimetry (DSC) and polymer rheology. The basic amine functionality offers the opportunity to convert inert PE into stimuli-responsive materials, such that the protonation of aminated PE affords the generation of functional antibacterial PE films.
Collapse
Affiliation(s)
- Saeed Ataie
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Amir Malmir
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Sabrina S Scott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - James T Goettel
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Steven N Clemens
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Darryl J Morrison
- Centre for Applied Research, NOVA Chemicals, Calgary, Alberta, T2E 7K7, Canada
| | - Cyrus Mackie
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Belinda Heyne
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Savvas G Hatzikiriakos
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
3
|
Shimizu T, Whitfield R, Jones GR, Raji IO, Konkolewicz D, Truong NP, Anastasaki A. Controlling primary chain dispersity in network polymers: elucidating the effect of dispersity on degradation. Chem Sci 2023; 14:13419-13428. [PMID: 38033899 PMCID: PMC10685271 DOI: 10.1039/d3sc05203f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Although dispersity has been demonstrated to be instrumental in determining many polymer properties, current synthetic strategies predominantly focus on tailoring the dispersity of linear polymers. In contrast, controlling the primary chain dispersity in network polymers is much more challenging, in part due to the complex nature of the reactions, which has limited the exploration of properties and applications. Here, a one-step method to prepare networks with precisely tuned primary chain dispersity is presented. By using an acid-switchable chain transfer agent and a degradable crosslinker in PET-RAFT polymerization, the in situ crosslinking of the propagating polymer chains was achieved in a quantitative manner. The incorporation of a degradable crosslinker, not only enables the accurate quantification of the various primary chain dispersities, post-synthesis, but also allows the investigation and comparison of their respective degradation profiles. Notably, the highest dispersity networks resulted in a 40% increase in degradation time when compared to their lower dispersity analogues, demonstrating that primary chain dispersity has a substantial impact on the network degradation rate. Our experimental findings were further supported by simulations, which emphasized the importance of higher molecular weight polymer chains, found within the high dispersity materials, in extending the lifetime of the network. This methodology presents a new and promising avenue to precisely tune primary chain dispersity within networks and demonstrates that polymer dispersity is an important parameter to consider when designing degradable materials.
Collapse
Affiliation(s)
- Takanori Shimizu
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
- Science & Innovation Center, Mitsubishi Chemical Corporation 1000 Kamoshida-cho, Aoba-ku Yokohama-shi Kanagawa 227-8502 Japan
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Glen R Jones
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Ibrahim O Raji
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University 651 E High St Oxford OH 45056 USA
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland
| |
Collapse
|
4
|
Ma Q, Qiao GG, An Z. Visible Light Photoiniferter Polymerization for Dispersity Control in High Molecular Weight Polymers. Angew Chem Int Ed Engl 2023; 62:e202314729. [PMID: 37814139 DOI: 10.1002/anie.202314729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The synthesis of polymers with high molecular weights, controlled sequence, and tunable dispersities remains a challenge. A simple and effective visible-light controlled photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization is reported here to realize this goal. Key to this strategy is the use of switchable RAFT agents (SRAs) to tune polymerization activities coupled with the inherent highly living nature of photoiniferter RAFT polymerization. The polymerization activities of SRAs were in situ adjusted by the addition of acid. In addition to a switchable chain-transfer coefficient, photolysis and polymerization kinetic studies revealed that neutral and protonated SRAs showed different photolysis and polymerization rates, which is unique to photoiniferter RAFT polymerization in terms of dispersity control. This strategy features no catalyst, no exogenous radical source, temporal regulation by visible light, and tunable dispersities in the unprecedented high molecular weight regime (up to 500 kg mol-1 ). Pentablock copolymers with three different dispersity combinations were also synthesized, highlighting that the highly living nature was maintained even for blocks with large dispersities. Tg was lowered for high-dispersity polymers of similar MWs due to the existence of more low-MW polymers. This strategy holds great potential for the synthesis of advanced materials with controlled molecular weight, dispersity and sequence.
Collapse
Affiliation(s)
- Qingchi Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Greg G Qiao
- Department of Chemical Engineering, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Häfliger F, Truong NP, Wang HS, Anastasaki A. Fate of the RAFT End-Group in the Thermal Depolymerization of Polymethacrylates. ACS Macro Lett 2023; 12:1207-1212. [PMID: 37615956 PMCID: PMC10515620 DOI: 10.1021/acsmacrolett.3c00418] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Thermal RAFT depolymerization has recently emerged as a promising methodology for the chemical recycling of polymers. However, while much attention has been given to the regeneration of monomers, the fate of the RAFT end-group after depolymerization has been unexplored. Herein, we identify the dominant small molecules derived from the RAFT end-group of polymethacrylates. The major product was found to be a unimer (DP = 1) RAFT agent, which is not only challenging to synthesize using conventional single-unit monomer insertion strategies, but also a highly active RAFT agent for methyl methacrylate, exhibiting faster consumption and yielding polymers with lower dispersities compared to the original, commercially available 2-cyano-2-propyl dithiobenzoate. Solvent-derived molecules were also identified predominantly at the beginning of the depolymerization, thus suggesting a significant mechanistic contribution from the solvent. Notably, the formation of both the unimer and the solvent-derived products remained consistent regardless of the RAFT agent, monomer, or solvent employed.
Collapse
Affiliation(s)
- Florian Häfliger
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
- Monash
Institute of Pharmaceutical Sciences, Monash
University, 399 Royal
Parade, Parkville, VIC 3152, Australia
| | - Hyun Suk Wang
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
6
|
Tan JD, Ramalingam B, Wong SL, Cheng JJW, Lim YF, Chellappan V, Khan SA, Kumar J, Hippalgaonkar K. Transfer Learning of Full Molecular Weight Distributions via High-Throughput Computer-Controlled Polymerization. J Chem Inf Model 2023; 63:4560-4573. [PMID: 37432764 DOI: 10.1021/acs.jcim.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The skew and shape of the molecular weight distribution (MWD) of polymers have a significant impact on polymer physical properties. Standard summary metrics statistically derived from the MWD only provide an incomplete picture of the polymer MWD. Machine learning (ML) methods coupled with high-throughput experimentation (HTE) could potentially allow for the prediction of the entire polymer MWD without information loss. In our work, we demonstrate a computer-controlled HTE platform that is able to run up to 8 unique variable conditions in parallel for the free radical polymerization of styrene. The segmented-flow HTE system was equipped with an inline Raman spectrometer and offline size exclusion chromatography (SEC) to obtain time-dependent conversion and MWD, respectively. Using ML forward models, we first predict monomer conversion, intrinsically learning varying polymerization kinetics that change for each experimental condition. In addition, we predict entire MWDs including the skew and shape as well as SHAP analysis to interpret the dependence on reagent concentrations and reaction time. We then used a transfer learning approach to use the data from our high-throughput flow reactor to predict batch polymerization MWDs with only three additional data points. Overall, we demonstrate that the combination of HTE and ML provides a high level of predictive accuracy in determining polymerization outcomes. Transfer learning can allow exploration outside existing parameter spaces efficiently, providing polymer chemists with the ability to target the synthesis of polymers with desired properties.
Collapse
Affiliation(s)
- Jin Da Tan
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- National University of Singapore Graduate School - Integrative Sciences and Engineering Programme, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Balamurugan Ramalingam
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science Technology and Research, 8 Biomedical Grove, Singapore 138665, Singapore
| | - Swee Liang Wong
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Home Team Science and Technology Agency, Singapore 138507, Singapore
| | - Jayce Jian Wei Cheng
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
| | - Yee-Fun Lim
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science Technology and Research, 8 Biomedical Grove, Singapore 138665, Singapore
| | - Vijila Chellappan
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
| | - Saif A Khan
- National University of Singapore Graduate School - Integrative Sciences and Engineering Programme, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Chemical and Biomolecular Engineering - National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jatin Kumar
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Xinterra Pte. Ltd., 77 Robinson Road, Singapore 068896, Singapore
| | - Kedar Hippalgaonkar
- Institute of Materials Research & Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634 Singapore, Singapore
- Department of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of Functional Intelligent Materials - National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
7
|
Parkatzidis K, de Haro Amez L, Truong NP, Anastasaki A. Cu(0)-RDRP of acrylates using an alkyl iodide initiator. Polym Chem 2023. [DOI: 10.1039/d2py01563c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In the vast majority of atom transfer radical polymerizations, alkyl bromides or alkyl chlorides are commonly employed as initiators. Herein, alkyl iodides are demonstrated as ATRP initiators.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Leonardo de Haro Amez
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P. Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Szczepaniak G, Jeong J, Kapil K, Dadashi-Silab S, Yerneni SS, Ratajczyk P, Lathwal S, Schild DJ, Das SR, Matyjaszewski K. Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis. Chem Sci 2022; 13:11540-11550. [PMID: 36320395 PMCID: PMC9557244 DOI: 10.1039/d2sc04210j] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-CuII/L). The role of PC was to trigger and drive the polymerization, while X-CuII/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-CuII/L, generating CuI/L activator and PC˙+. The ATRP ligand (L) used in excess then reduced the PC˙+, closing the photocatalytic cycle. The continuous reduction of X-CuII/L back to CuI/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-CuII/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ Đ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ Đ ≤ 1.22) under identical conditions.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Jaepil Jeong
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Sajjad Dadashi-Silab
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | | | - Paulina Ratajczyk
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Dirk J Schild
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Subha R Das
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
- Center for Nucleic Acids Science & Technology, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | | |
Collapse
|
9
|
Corrigan N, Boyer C. Living in the Moment: A Mathematically Verified Approach for Molecular Weight Distribution Analysis and Application to Data Storage. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW2052, Australia
| |
Collapse
|
10
|
Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: A Mechanistic Perspective. J Am Chem Soc 2022; 144:15413-15430. [PMID: 35882005 DOI: 10.1021/jacs.2c05364] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception, atom transfer radical polymerization (ATRP) has seen continuous evolution in terms of the design of the catalyst and reaction conditions; today, it is one of the most useful techniques to prepare well-defined polymers as well as one of the most notable examples of catalysis in polymer chemistry. This Perspective highlights fundamental advances in the design of ATRP reactions and catalysts, focusing on the crucial role that mechanistic studies play in understanding, rationalizing, and predicting polymerization outcomes. A critical summary of traditional ATRP systems is provided first; we then focus on the most recent developments to improve catalyst selectivity, control polymerizations via external stimuli, and employ new photochemical or dual catalytic systems with an outlook to future research directions and open challenges.
Collapse
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Controlling polymer molecular weight distributions by light through reversible addition‐fragmentation chain transfer‐hetero‐Diels–Alder click conjugation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106076. [PMID: 35175001 PMCID: PMC9259732 DOI: 10.1002/advs.202106076] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Reversible-deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic-inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.
Collapse
Affiliation(s)
- Sylwia Dworakowska
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of Chemical Engineering and TechnologyCracow University of TechnologyWarszawska 24Cracow31‐155Poland
| | - Francesca Lorandi
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Department of Industrial EngineeringUniversity of Padovavia Marzolo 9Padova35131Italy
| | - Adam Gorczyński
- Department of ChemistryCarnegie Mellon University4400 Fifth AvenuePittsburghPA15213USA
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznańskiego 8Poznań61‐614Poland
| | | |
Collapse
|
13
|
Antonopoulou MN, Whitfield R, Truong NP, Anastasaki A. Controlling polymer dispersity using switchable RAFT agents: Unravelling the effect of the organic content and degree of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Shimizu T, Truong NP, Whitfield R, Anastasaki A. Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to Control Polymer Dispersity. ACS POLYMERS AU 2021; 1:187-195. [PMID: 34901951 PMCID: PMC8662723 DOI: 10.1021/acspolymersau.1c00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
Cu(0)-reversible deactivation radical polymerization (RDRP) is a versatile polymerization tool, providing rapid access to well-defined polymers while utilizing mild reaction conditions and low catalyst loadings. However, thus far, this method has not been applied to tailor dispersity, a key parameter that determines the physical properties and applications of polymeric materials. Here, we report a simple to perform method, whereby Cu(0)-RDRP can systematically control polymer dispersity (Đ = 1.07-1.72), while maintaining monomodal molecular weight distributions. By varying the ligand concentration, we could effectively regulate the rates of initiation and deactivation, resulting in polymers of various dispersities. Importantly, both low and high dispersity PMA possess high end-group fidelity, as evidenced by MALDI-ToF-MS, allowing for a range of block copolymers to be prepared with different dispersity configurations. The scope of our method can also be extended to include inexpensive ligands (i.e., PMDETA), which also facilitated the polymerization of lower propagation rate constant monomers (i.e., styrene) and the in situ synthesis of block copolymers. This work significantly expands the toolbox of RDRP methods for tailoring dispersity in polymeric materials.
Collapse
Affiliation(s)
- Takanori Shimizu
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku,
Yokohama-shi, Kanagawa 227-8502, Japan
| | - Nghia P. Truong
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Richard Whitfield
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,
| | - Athina Anastasaki
- Laboratory
of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland,
| |
Collapse
|