1
|
Ke Y. Stochastic resonance in vibrational polariton chemistry. J Chem Phys 2025; 162:064702. [PMID: 39927544 DOI: 10.1063/5.0248419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
In this work, we systematically investigate the impact of ambient noise intensity on the rate modifications of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. To achieve this, we utilize a numerically exact open quantum system approach-the hierarchical equations of motion in twin space, combined with a flexible tree tensor network state solver. Our findings reveal a stochastic resonance phenomenon in cavity-modified chemical reactivities: an optimal reaction rate enhancement occurs at an intermediate noise level. In other words, this enhancement diminishes if ambient noise, sensed by the cavity-molecule system through cavity leakage, is either too weak or excessively strong. In the collective coupling regime, when the cavity is weakly damped, rate enhancement strengthens as more molecules couple to the cavity. In contrast, under strong cavity damping, reaction rates decline as the number of molecules grows.
Collapse
Affiliation(s)
- Yaling Ke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Huang X, Liang W. Analytical derivative approaches for vibro-polaritonic structures and properties. I. Formalism and implementation. J Chem Phys 2025; 162:024115. [PMID: 39783973 DOI: 10.1063/5.0228891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Vibro-polaritons are hybrid light-matter states that arise from the strong coupling between the molecular vibrational transitions and the photons in an optical cavity. Developing theoretical and computational methods to describe and predict the unique properties of vibro-polaritons is of great significance for guiding the design of new materials and experiments. Here, we present the ab initio cavity Born-Oppenheimer density functional theory (CBO-DFT) and formulate the analytic energy gradient and Hessian as well as the nuclear and photonic derivatives of dipole and polarizability within the framework of CBO-DFT to efficiently calculate the harmonic vibrational frequencies, infrared absorption, and Raman scattering spectra of vibro-polaritons as well as to explore the critical points on the cavity potential energy surface. The implementation of analytic derivatives into the electronic structure package is validated by a comparison with the finite-difference method and with other reported computational results. By adopting appropriate exchange-correlation functionals, CBO-DFT can better describe the structure and properties of molecules in the cavity than CBO-Hartree-Fock method. It is expected that CBO-DFT is a useful tool for studying the polaritonic structures and properties.
Collapse
Affiliation(s)
- Xunkun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
3
|
Verdelli F, Wei YC, Joseph K, Abdelkhalik MS, Goudarzi M, Askes SHC, Baldi A, Meijer EW, Gomez Rivas J. Polaritonic Chemistry Enabled by Non-Local Metasurfaces. Angew Chem Int Ed Engl 2024; 63:e202409528. [PMID: 39159334 DOI: 10.1002/anie.202409528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Vibrational strong coupling can modify chemical reaction pathways in unconventional ways. Thus far, Fabry-Perot cavities formed by pairs of facing mirrors have been mostly utilized to achieve vibrational strong coupling. In this study, we demonstrate the application of non-local metasurfaces that can sustain surface lattice resonances, enabling chemical reactions under vibrational strong coupling. We show that the solvolysis kinetics of para-nitrophenyl acetate can be accelerated by a factor of 2.7 by strong coupling to the carbonyl bond of the solvent and the solute with a surface lattice resonance. Our work introduces a new platform to investigate polaritonic chemical reactions. In contrast to Fabry-Perot cavities, metasurfaces define open optical cavities with single surfaces, which removes alignment hurdles, facilitating polaritonic chemistry across large areas.
Collapse
Affiliation(s)
- Francesco Verdelli
- Dutch Institute for Fundamental Energy Research, 5600HH, Eindhoven, The Netherlands
| | - Yu-Chen Wei
- Institute for Complex Molecular Systems and Eindhoven Hendrik Casimir Institute, Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands
| | - Kripa Joseph
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands
| | - Mohamed S Abdelkhalik
- Institute for Complex Molecular Systems and Eindhoven Hendrik Casimir Institute, Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands
| | - Masoumeh Goudarzi
- Institute for Complex Molecular Systems and Eindhoven Hendrik Casimir Institute, Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands
| | - Sven H C Askes
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - Andrea Baldi
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands
| | - Jaime Gomez Rivas
- Institute for Complex Molecular Systems and Eindhoven Hendrik Casimir Institute, Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Mondal S, Keshavamurthy S. Cavity induced modulation of intramolecular vibrational energy flow pathways. J Chem Phys 2024; 161:194302. [PMID: 39545667 DOI: 10.1063/5.0236437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Recent experiments in polariton chemistry indicate that reaction rates can be significantly enhanced or suppressed inside an optical cavity. One possible explanation for the rate modulation involves the cavity mode altering the intramolecular vibrational energy redistribution (IVR) pathways by coupling to specific molecular vibrations in the vibrational strong coupling (VSC) regime. However, the mechanism for such a cavity-mediated modulation of IVR is yet to be understood. In a recent study, Ahn et al. [Science 380, 1165 (2023)] observed that the rate of alcoholysis of phenyl isocyanate (PHI) is considerably suppressed when the cavity mode is tuned to be resonant with the isocyanate (NCO) stretching mode of PHI. Here, we analyze the quantum and classical IVR dynamics of a model effective Hamiltonian for PHI involving the high-frequency NCO-stretch mode and two of the key low-frequency phenyl ring modes. We compute various indicators of the extent of IVR in the cavity-molecule system and show that tuning the cavity frequency to the NCO-stretching mode strongly perturbs the cavity-free IVR pathways. Subsequent IVR dynamics involving the cavity and the molecular anharmonic resonances lead to efficient scrambling of an initial NCO-stretching overtone state over the molecular quantum number space. We also show that the hybrid light-matter states of the effective Hamiltonian undergo a localization-delocalization transition in the VSC regime.
Collapse
Affiliation(s)
- Subhadip Mondal
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016, India
| | - Srihari Keshavamurthy
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
5
|
Michon MA, Simpkins BS. Impact of Cavity Length Non-uniformity on Reaction Rate Extraction in Strong Coupling Experiments. J Am Chem Soc 2024; 146:30596-30606. [PMID: 39466594 DOI: 10.1021/jacs.4c12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Reports of altered chemical phenomena under vibrational strong coupling, including reaction rates, product distributions, intermolecular forces, and cavity-mediated vibrational energy transfer, have been met with a great deal of skepticism due to several irreproducible results and the lack of an accepted theoretical framework. In this work, we add some insight by identifying a UV-vis measurement artifact that distorts observed absorption peak positions, amplitudes, and consequently, chemical reaction rates extracted in optical microcavities. We predict and characterize the behavior of this artifact using the Transfer Matrix (TM) method and confirm its presence experimentally. We then present a correction technique whereby an effective molar absorption coefficient is assigned to an absorbing species within the cavity. These revelations have important implications for many existing examples of cavity-modified chemistry and establishing best practices for carrying out robust future investigations.
Collapse
Affiliation(s)
- Michael A Michon
- National Academies of Science NRC Post-Doctoral Researcher, Naval Research Laboratory, Chemistry Division, 4555 Overlook Ave SW, Washington, District of Columbia 20375, United States
| | - Blake S Simpkins
- National Academies of Science NRC Post-Doctoral Researcher, Naval Research Laboratory, Chemistry Division, 4555 Overlook Ave SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
6
|
Moiseyev N. Conditions for enhancement of gas phase chemical reactions inside a dark microwave cavity. Commun Chem 2024; 7:227. [PMID: 39358458 PMCID: PMC11447044 DOI: 10.1038/s42004-024-01286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
The ability to slow down or enhance chemical reactions, by a seemingly simple setup of reactions inside a cavity made of two parallel mirrors is fascinating. Unfortunately, currently, theory and experiment have not yet fully converged. Since theory and experiment perfectly match for atom/molecular collisions in gas phase the enhancing chemical reactions in gas phase through its coupling to quantized electromagnetic modes in a dark cavity is investigated. Here the conditions and guidelines for selecting the proper type of reactions that can be enhanced by a dark cavity are provided. Showing that the asymmetric reaction rates of O + D2 → [ODD]# → OD + D and H + ArCl → [ArHCl]# → H + Ar + Cl can be enhanced by a dark cavity. On the other hand, an effect of the dark cavity on the symmetric reaction of hydrogen exchange in methane is predicted to be negligible. Notice that the theory is not limited to microwave cavities only.
Collapse
Affiliation(s)
- Nimrod Moiseyev
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
- Faculty of Physics, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
- Solid State Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
7
|
Granizo E, Kriukova I, Escudero-Villa P, Samokhvalov P, Nabiev I. Microfluidics and Nanofluidics in Strong Light-Matter Coupling Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1520. [PMID: 39330676 PMCID: PMC11435064 DOI: 10.3390/nano14181520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
The combination of micro- or nanofluidics and strong light-matter coupling has gained much interest in the past decade, which has led to the development of advanced systems and devices with numerous potential applications in different fields, such as chemistry, biosensing, and material science. Strong light-matter coupling is achieved by placing a dipole (e.g., an atom or a molecule) into a confined electromagnetic field, with molecular transitions being in resonance with the field and the coupling strength exceeding the average dissipation rate. Despite intense research and encouraging results in this field, some challenges still need to be overcome, related to the fabrication of nano- and microscale optical cavities, stability, scaling up and production, sensitivity, signal-to-noise ratio, and real-time control and monitoring. The goal of this paper is to summarize recent developments in micro- and nanofluidic systems employing strong light-matter coupling. An overview of various methods and techniques used to achieve strong light-matter coupling in micro- or nanofluidic systems is presented, preceded by a brief outline of the fundamentals of strong light-matter coupling and optofluidics operating in the strong coupling regime. The potential applications of these integrated systems in sensing, optofluidics, and quantum technologies are explored. The challenges and prospects in this rapidly developing field are discussed.
Collapse
Affiliation(s)
- Evelyn Granizo
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Pedro Escudero-Villa
- Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador
| | - Pavel Samokhvalov
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- BioSpectroscopie Translationnelle (BioSpecT)-UR 7506, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
8
|
Ke Y, Richardson JO. Quantum nature of reactivity modification in vibrational polariton chemistry. J Chem Phys 2024; 161:054104. [PMID: 39087532 DOI: 10.1063/5.0220908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
In this work, we present a mixed quantum-classical open quantum system dynamics method for studying rate modifications of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. In this approach, the cavity radiation mode is treated classically with a mean-field nuclear force averaging over the remaining degrees of freedom, both within the system and the environment, which are handled quantum mechanically within the hierarchical equations of motion framework. Using this approach, we conduct a comparative analysis by juxtaposing the mixed quantum-classical results with fully quantum-mechanical simulations. After eliminating spurious peaks that can occur when not using the rigorous definition of the rate constant, we confirm the crucial role of the quantum nature of the cavity radiation mode in reproducing the resonant peak observed in the cavity frequency-dependent rate profile. In other words, it appears necessary to explicitly consider the quantized photonic states in studying reactivity modification in vibrational polariton chemistry (at least for the model systems studied in this work), as these phenomena stem from cavity-induced reaction pathways involving resonant energy exchanges between photons and molecular vibrational transitions.
Collapse
Affiliation(s)
- Yaling Ke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Kumar S, Biswas S, Rashid U, Mony KS, Chandrasekharan G, Mattiotti F, Vergauwe RMA, Hagenmuller D, Kaliginedi V, Thomas A. Extraordinary Electrical Conductance through Amorphous Nonconducting Polymers under Vibrational Strong Coupling. J Am Chem Soc 2024; 146:18999-19008. [PMID: 38736166 DOI: 10.1021/jacs.4c03016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Enhancing the electrical conductance through amorphous nondoped polymers is challenging. Here, we show that vibrational strong coupling (VSC) of intrinsically nonconducting and amorphous polymers such as polystyrene, deuterated polystyrene, and poly(benzyl methacrylate) to the vacuum electromagnetic field of the cavity enhances the electrical conductivity by at least 6 orders of magnitude compared to the uncoupled polymers. Remarkably, the observed extraordinary conductance is vibrational mode selective and occurs only under the VSC of the aromatic C-H(D) out-of-plane bending modes of the polymers. The conductance is thermally activated at the onset of strong coupling and becomes temperature-independent as the collective strong coupling strength increases. The electrical characterizations are performed without external light excitation, demonstrating the role of vacuum electromagnetic field-matter strong coupling in enhancing long-range transport even in amorphous nonconducting polymers.
Collapse
Affiliation(s)
- Sunil Kumar
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Subha Biswas
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Umar Rashid
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Kavya S Mony
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Gokul Chandrasekharan
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| | - Francesco Mattiotti
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), 67000 Strasbourg, France
| | - Robrecht M A Vergauwe
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - David Hagenmuller
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), 67000 Strasbourg, France
| | | | - Anoop Thomas
- Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, 560 012, India
| |
Collapse
|
10
|
Ke Y, Richardson JO. Insights into the mechanisms of optical cavity-modified ground-state chemical reactions. J Chem Phys 2024; 160:224704. [PMID: 38856061 DOI: 10.1063/5.0200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
In this work, we systematically investigate the mechanisms underlying the rate modification of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. We employ a symmetric double-well description of the molecular potential energy surface and a numerically exact open quantum system approach-the hierarchical equations of motion in twin space with a matrix product state solver. Our results predict the existence of multiple peaks in the photon frequency-dependent rate profile for a strongly anharmonic molecular system with multiple vibrational transition energies. The emergence of a new peak in the rate profile is attributed to the opening of an intramolecular reaction pathway, energetically fueled by the cavity photon bath through a resonant cavity mode. The peak intensity is determined jointly by kinetic factors. Going beyond the single-molecule limit, we examine the effects of the collective coupling of two molecules to the cavity. We find that when two identical molecules are simultaneously coupled to the same resonant cavity mode, the reaction rate is further increased. This additional increase is associated with the activation of a cavity-induced intermolecular reaction channel. Furthermore, the rate modification due to these cavity-promoted reaction pathways remains unaffected, regardless of whether the molecular dipole moments are aligned in the same or opposite direction as the light polarization.
Collapse
Affiliation(s)
- Yaling Ke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Weight BM, Weix DJ, Tonzetich ZJ, Krauss TD, Huo P. Cavity Quantum Electrodynamics Enables para- and ortho-Selective Electrophilic Bromination of Nitrobenzene. J Am Chem Soc 2024; 146:16184-16193. [PMID: 38814893 PMCID: PMC11177318 DOI: 10.1021/jacs.4c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Coupling molecules to a quantized radiation field inside an optical cavity has shown great promise to modify chemical reactivity. In this work, we show that the ground-state selectivity of the electrophilic bromination of nitrobenzene can be fundamentally changed by strongly coupling the reaction to the cavity, generating ortho- or para-substituted products instead of the meta product. Importantly, these are products that are not obtained from the same reaction outside the cavity. A recently developed ab initio approach was used to theoretically compute the relative energies of the cationic Wheland intermediates, which indicate the kinetically preferred bromination site for all products. Performing an analysis of the ground-state electron density for the Wheland intermediates inside and outside the cavity, we demonstrate how strong coupling induces reorganization of the molecular charge distribution, which in turn leads to different bromination sites directly dependent on the cavity conditions. Overall, the results presented here can be used to understand cavity induced changes to ground-state chemical reactivity from a mechanistic perspective as well as to directly connect frontier theoretical simulations to state-of-the-art, but realistic, experimental cavity conditions.
Collapse
Affiliation(s)
- Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
| | - Daniel J. Weix
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary J. Tonzetich
- Department
of Chemistry, University of Texas at San
Antonio, San Antonio, Texas 78249, United States
| | - Todd D. Krauss
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
12
|
Patrahau B, Piejko M, Mayer RJ, Antheaume C, Sangchai T, Ragazzon G, Jayachandran A, Devaux E, Genet C, Moran J, Ebbesen TW. Direct Observation of Polaritonic Chemistry by Nuclear Magnetic Resonance Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202401368. [PMID: 38584127 DOI: 10.1002/anie.202401368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Polaritonic chemistry is emerging as a powerful approach to modifying the properties and reactivity of molecules and materials. However, probing how the electronics and dynamics of molecular systems change under strong coupling has been challenging due to the narrow range of spectroscopic techniques that can be applied in situ. Here we develop microfluidic optical cavities for vibrational strong coupling (VSC) that are compatible with nuclear magnetic resonance (NMR) spectroscopy using standard liquid NMR tubes. VSC is shown to influence the equilibrium between two conformations of a molecular balance sensitive to London dispersion forces, revealing an apparent change in the equilibrium constant under VSC. In all compounds studied, VSC does not induce detectable changes in chemical shifts, J-couplings, or spin-lattice relaxation times. This unexpected finding indicates that VSC does not substantially affect molecular electron density distributions, and in turn has profound implications for the possible mechanisms at play in polaritonic chemistry under VSC and suggests that the emergence of collective behavior is critical.
Collapse
Affiliation(s)
- B Patrahau
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - M Piejko
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - R J Mayer
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - C Antheaume
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - T Sangchai
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - G Ragazzon
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - A Jayachandran
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - E Devaux
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - C Genet
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - J Moran
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - T W Ebbesen
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
13
|
Ying W, Taylor MAD, Huo P. Resonance theory of vibrational polariton chemistry at the normal incidence. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2601-2615. [PMID: 39678662 PMCID: PMC11636501 DOI: 10.1515/nanoph-2023-0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/10/2024] [Indexed: 12/17/2024]
Abstract
We present a theory that explains the resonance effect of the vibrational strong coupling (VSC) modified reaction rate constant at the normal incidence of a Fabry-Pérot (FP) cavity. This analytic theory is based on a mechanistic hypothesis that cavity modes promote the transition from the ground state to the vibrational excited state of the reactant, which is the rate-limiting step of the reaction. This mechanism for a single molecule coupled to a single-mode cavity has been confirmed by numerically exact simulations in our recent work in [J. Chem. Phys. 159, 084104 (2023)]. Using Fermi's golden rule (FGR), we formulate this rate constant for many molecules coupled to many cavity modes inside a FP microcavity. The theory provides a possible explanation for the resonance condition of the observed VSC effect and a plausible explanation of why only at the normal incident angle there is the resonance effect, whereas, for an oblique incidence, there is no apparent VSC effect for the rate constant even though both cases generate Rabi splitting and forming polariton states. On the other hand, the current theory cannot explain the collective effect when a large number of molecules are collectively coupled to the cavity, and future work is required to build a complete microscopic theory to explain all observed phenomena in VSC.
Collapse
Affiliation(s)
- Wenxiang Ying
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY14627, USA
| | - Michael A. D. Taylor
- Hajim School of Engineering, The Institute of Optics, University of Rochester, Rochester, NY14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY14627, USA
- Hajim School of Engineering, The Institute of Optics, University of Rochester, Rochester, NY14627, USA
| |
Collapse
|
14
|
Lindoy LP, Mandal A, Reichman DR. Investigating the collective nature of cavity-modified chemical kinetics under vibrational strong coupling. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2617-2633. [PMID: 39678666 PMCID: PMC11636483 DOI: 10.1515/nanoph-2024-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/05/2024] [Indexed: 12/17/2024]
Abstract
In this paper, we develop quantum dynamical methods capable of treating the dynamics of chemically reacting systems in an optical cavity in the vibrationally strong-coupling (VSC) limit at finite temperatures and in the presence of a dissipative solvent in both the few and many molecule limits. In the context of two simple models, we demonstrate how reactivity in the collective VSC regime does not exhibit altered rate behavior in equilibrium but may exhibit resonant cavity modification of reactivity when the system is explicitly out of equilibrium. Our results suggest experimental protocols that may be used to modify reactivity in the collective regime and point to features not included in the models studied, which demand further scrutiny.
Collapse
|
15
|
Singh J, Garg P, Anand RV, George J. Cavity Catalysis of an Enantioselective Reaction under Vibrational Strong Coupling. Chemistry 2024; 30:e202400607. [PMID: 38436868 DOI: 10.1002/chem.202400607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Strong light-matter interaction is emerging as an exciting tool for controlling chemical reactions. Here, we demonstrate an L-proline-catalyzed direct asymmetric Aldol reaction under vibrational strong coupling. Both the reactants (4-nitrobenzaldehyde and acetone) carbonyl bands are coupled to an infrared photon and react in the presence of L-proline. The reaction mixture is eluted from the cavity, and the conversion yields and enantiomeric excess are quantified using NMR and chiral HPLC. The conversion yields increase by up to 90 % in ON-resonance conditions. Interestingly, a large increase in the conversion yield does not affect the enantiomeric excess. Further control experiments were carried out by varying the temperature, and we propose that the rate-limiting step may not be the deciding factor in enantioselectivity. Whereas the formation of the enamine intermediate is modified by cavity coupling experiments. For this class of enantioselective reactions, strong coupling does not change the enantiomeric excess, possibly due to the large energy difference in chiral transition states. Strong coupling can boost the formation of enamine intermediate, thereby favouring the product yield. This gives more hope to test polaritonic chemistry based on enantioselective reactions in which the branching ratios can be controlled.
Collapse
Affiliation(s)
- Jaibir Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 40306, India
| | - Pallavi Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 40306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 40306, India
| | - Jino George
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, 40306, India
| |
Collapse
|
16
|
Hirai K, Andell Hutchison J, Uji-I H. Optical Cavity Design and Functionality for Molecular Strong Coupling. Chemistry 2024; 30:e202303110. [PMID: 37941155 DOI: 10.1002/chem.202303110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Optical cavity/molecule strong coupling offers attractive opportunities to modulate photochemical or photophysical processes. When atoms or molecules are placed in an optical cavity, they can coherently exchange photonic energy with optical cavity vacuum fields, entering the strong coupling interaction regime. Recent work suggests that the thermodynamic and kinetic properties of molecules can be significantly changed by strong coupling, resulting in the emergence of intriguing photochemical and photophysical phenomena. As more and more physico-chemical systems are studied under strong coupling conditions, optical cavities have also advanced in their sophistication, responsiveness, and (multi)functionality. In this review, we highlight some of these recent developments, particularly focusing on Fabry-Perot microcavities.
Collapse
Affiliation(s)
- Kenji Hirai
- Research Institute for Electronic Science (RIES), Hokkaido University, N20 W10, Sapporo, Hokkaido, 001-0020, Japan
| | - James Andell Hutchison
- School of Chemistry and, Australian Research Council Centre of Excellence in Exciton Science, The University of Melbourne, Masson Rd, Parkville, VIC, 3052, Australia
| | - Hiroshi Uji-I
- Research Institute for Electronic Science (RIES), Hokkaido University, N20 W10, Sapporo, Hokkaido, 001-0020, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
17
|
Hu D, Ying W, Huo P. Resonance Enhancement of Vibrational Polariton Chemistry Obtained from the Mixed Quantum-Classical Dynamics Simulations. J Phys Chem Lett 2023; 14:11208-11216. [PMID: 38055902 PMCID: PMC10726371 DOI: 10.1021/acs.jpclett.3c02985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
We applied a variety of mixed quantum-classical (MQC) approaches to simulate the VSC-influenced reaction rate constant. All of these MQC simulations treat the key vibrational levels associated with the reaction coordinate in the quantum subsystem (as quantum states), whereas all other degrees of freedom (DOFs) are treated inside the classical subsystem. We find that, as long as we have the quantum state descriptions for the vibrational DOFs, one can correctly describe the VSC resonance condition when the cavity frequency matches the bond vibrational frequency. This correct resonance behavior can be obtained regardless of the detailed MQC methods that one uses. The results suggest that the MQC approaches can generate semiquantitative agreement with the exact results for rate constant changes when changing the cavity frequency, the light-matter coupling strength, or the cavity lifetime. The finding of this work suggests that one can use computationally economic MQC approaches to explore the collective coupling scenario when many molecules are collectively coupled to many cavity modes in the future.
Collapse
Affiliation(s)
- Deping Hu
- Center
for Advanced Materials Research, Beijing
Normal University, Zhuhai 519087, China
| | - Wenxiang Ying
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Institute
of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
18
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
19
|
Lyu PT, Yin LX, Shen YT, Gao Z, Chen HY, Xu JJ, Kang B. Plasmonic Cavity-Catalysis by Standing Hot Carrier Waves. J Am Chem Soc 2023; 145:18912-18919. [PMID: 37584625 DOI: 10.1021/jacs.3c05392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Manipulating active sites of catalysts is crucial but challenging in catalysis science and engineering. Beyond the design of the composition and structure of catalysts, the confined electromagnetic field in optical cavities has recently become a promising method for catalyzing chemical reactions via strong light-matter interactions. Another form of confined electromagnetic field, the charge density wave in plasmonic cavities, however, still needs to be explored for catalysis. Here, we present an unprecedented catalytic mode based on plasmonic cavities, called plasmonic cavity-catalysis. We achieve direct control of catalytic sites in plasmonic cavities through standing hot carrier waves. Periodic catalytic hotspots are formed because of localized energy and carrier distribution and can be well tuned by cavity geometry, charge density, and excitation angle. We also found that the catalytic activity of the cavity mode increases several orders of magnitude compared with conventional plasmonic catalysis. We ultimately demonstrate that the locally concentrated long-lived hot carriers in the standing wave mode underlie the formation of the catalytic hotspots. Plasmonic cavity-catalysis provides a new approach to manipulate the catalytic sites and rates and may expand the frontier of heterogeneous catalysis.
Collapse
Affiliation(s)
- Pin-Tian Lyu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Ting Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhaoshuai Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
21
|
Johns B. Dispersion engineering of infrared epsilon-near-zero modes by strong coupling to optical cavities. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3301-3312. [PMID: 39634149 PMCID: PMC11501747 DOI: 10.1515/nanoph-2023-0215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 12/07/2024]
Abstract
Epsilon-near-zero (ENZ) materials have recently emerged as a promising platform for infrared nanophotonics. A significant challenge in the design of ENZ-based optics is to control the dispersion of ENZ modes that otherwise have a flat profile near the ENZ frequency. Strong coupling with an optical cavity is a promising approach to ENZ dispersion engineering, which however has limitations due to the lack of tunability or nanofabrication demands of the cavity employed. Here, we theoretically and numerically show that much of the limitations of previous approaches can be overcome by strongly coupling the ENZ mode to an unpatterned Fabry-Perot cavity. We demonstrate this unprecedented ENZ dispersion control in coupled cavities by designing tunable infrared polarizers that can absorb s and reflect p-polarized components, or vice versa, for almost any oblique angle of incidence, i.e. omnidirectional polarizers. The feasibility of active control is also demonstrated using a phase change material within the cavity, which predicts dynamic switchability of polariton dispersions across multiple resonant levels at mid-infrared wavelengths. These results are expected to advance the current understanding of strongly coupled ENZ interactions and demonstrate their potential in tailoring dispersions for active and passive control of light.
Collapse
Affiliation(s)
- Ben Johns
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, 140306, India
| |
Collapse
|
22
|
Abstract
The coherent exchange of energy between materials and optical fields leads to strong light-matter interactions and so-called polaritonic states with intriguing properties, halfway between light and matter. Two decades ago, research on these strong light-matter interactions, using optical cavity (vacuum) fields, remained for the most part the province of the physicist, with a focus on inorganic materials requiring cryogenic temperatures and carefully fabricated, high-quality optical cavities for their study. This review explores the history and recent acceleration of interest in the application of polaritonic states to molecular properties and processes. The enormous collective oscillator strength of dense films of organic molecules, aggregates, and materials allows cavity vacuum field strong coupling to be achieved at room temperature, even in rapidly fabricated, highly lossy metallic optical cavities. This has put polaritonic states and their associated coherent phenomena at the fingertips of laboratory chemists, materials scientists, and even biochemists as a potentially new tool to control molecular chemistry. The exciting phenomena that have emerged suggest that polaritonic states are of genuine relevance within the molecular and material energy landscape.
Collapse
Affiliation(s)
- Kenji Hirai
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
| | - James A Hutchison
- School of Chemistry and ARC Centre of Excellence in Exciton Science, The University of Melbourne, Masson Road, Parkville, Victoria 3052 Australia
| | - Hiroshi Uji-I
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee Leuven Belgium
| |
Collapse
|
23
|
Piejko M, Patrahau B, Joseph K, Muller C, Devaux E, Ebbesen TW, Moran J. Solvent Polarity under Vibrational Strong Coupling. J Am Chem Soc 2023; 145:13215-13222. [PMID: 37289656 DOI: 10.1021/jacs.3c02260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vibrational strong coupling (VSC) occurs when molecular vibrations hybridize with the modes of an optical cavity, an interaction mediated by vacuum fluctuations. VSC has been shown to influence the rates and selectivity of chemical reactions. However, a clear understanding of the mechanism at play remains elusive. Here, we show that VSC affects the polarity of solvents, which is a parameter well-known to influence reactivity. The strong solvatochromic response of Reichardt's dye (RD) was used to quantify the polarity of a series of alcohol solvents at visible wavelengths. We observed that, by simultaneously coupling the OH and CH vibrational bands of the alcohols, the absorption maximum of Reichardt's dye redshifted by up to ∼15.1 nm, corresponding to an energy change of 5.1 kJ·mol-1. With aliphatic alcohols, the magnitude of the absorption change of RD was observed to be related to the length of the alkyl chain, the molecular surface area, and the polarizability, indicating that dispersion forces are impacted by strong coupling. Therefore, we propose that dispersion interactions, which themselves originate from vacuum fluctuations, are impacted under strong coupling and are therefore critical to understanding how VSC influences chemistry.
Collapse
Affiliation(s)
- Maciej Piejko
- University of Strasbourg, CNRS, ISIS and icFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Bianca Patrahau
- University of Strasbourg, CNRS, ISIS and icFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Kripa Joseph
- University of Strasbourg, CNRS, ISIS and icFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Cyprien Muller
- University of Strasbourg, CNRS, ISIS and icFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Eloïse Devaux
- University of Strasbourg, CNRS, ISIS and icFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Thomas W Ebbesen
- University of Strasbourg, CNRS, ISIS and icFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Joseph Moran
- University of Strasbourg, CNRS, ISIS and icFRC, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
24
|
Lindoy LP, Mandal A, Reichman DR. Quantum dynamical effects of vibrational strong coupling in chemical reactivity. Nat Commun 2023; 14:2733. [PMID: 37173299 PMCID: PMC10182063 DOI: 10.1038/s41467-023-38368-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Recent experiments suggest that ground state chemical reactivity can be modified when placing molecular systems inside infrared cavities where molecular vibrations are strongly coupled to electromagnetic radiation. This phenomenon lacks a firm theoretical explanation. Here, we employ an exact quantum dynamics approach to investigate a model of cavity-modified chemical reactions in the condensed phase. The model contains the coupling of the reaction coordinate to a generic solvent, cavity coupling to either the reaction coordinate or a non-reactive mode, and the coupling of the cavity to lossy modes. Thus, many of the most important features needed for realistic modeling of the cavity modification of chemical reactions are included. We find that when a molecule is coupled to an optical cavity it is essential to treat the problem quantum mechanically to obtain a quantitative account of alterations to reactivity. We find sizable and sharp changes in the rate constant that are associated with quantum mechanical state splittings and resonances. The features that emerge from our simulations are closer to those observed in experiments than are previous calculations, even for realistically small values of coupling and cavity loss. This work highlights the importance of a fully quantum treatment of vibrational polariton chemistry.
Collapse
Affiliation(s)
- Lachlan P Lindoy
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA.
| |
Collapse
|
25
|
Gómez JA, Vendrell O. Vibrational Energy Redistribution and Polaritonic Fermi Resonances in the Strong Coupling Regime. J Phys Chem A 2023; 127:1598-1608. [PMID: 36758162 DOI: 10.1021/acs.jpca.2c08608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Intramolecular vibrational energy redistribution (IVR) plays a significant role in cavity-modified chemical reaction rates. As such, understanding the fundamental mechanisms by which the cavity modifies the IVR pathways is a fundamental step toward engineering the effect of the confined electromagnetic modes on the outcome of chemical processes. Here we consider an ensemble of M two-mode molecules with intramolecular anharmonic couplings interacting with an infrared cavity mode and consider their quantum dynamics and infrared spectra. Polaritonic Fermi resonances involving fundamental and overtone states of the polaritonic subsystem mediate efficient energy transfer pathways between otherwise off-resonant molecular states. These pathways are of collective nature, yet enabled by the intramolecular anharmonic couplings. Hence, through polaritonic Fermi resonances, cavity excitation can efficiently spread toward low-frequency modes while becoming delocalized over several molecules.
Collapse
Affiliation(s)
- Johana A Gómez
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| | - Oriol Vendrell
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
George J, Singh J. Polaritonic Chemistry: Band-Selective Control of Chemical Reactions by Vibrational Strong Coupling. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jino George
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab 140306, India
| | - Jaibir Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab 140306, India
| |
Collapse
|
27
|
Singh J, Lather J, George J. Solvent Dependence on Cooperative Vibrational Strong Coupling and Cavity Catalysis. Chemphyschem 2023:e202300016. [PMID: 36745043 DOI: 10.1002/cphc.202300016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Strong light-matter coupling offers a unique way to control chemical reactions at the molecular level. Here, we compare the solvent effect on an ester solvolysis process under cooperative vibrational strong coupling (VSC). Three reactants, para-nitrophenylacetate, 3-methyl-para-nitrophenylbenzoate, and bis-(2, 4-dinitrophenyl) oxalate are chosen to study the effect of VSC on the solvolysis reaction rates. Two solvents, ethyl acetate and cyclopentanone, are also considered to compare the cavity catalysis by coupling the C=O stretching band of the reactant and the solvent molecules to a Fabry-Perot cavity mode. Interestingly, both solvents enhance the chemical reaction rate of para-nitrophenylacetate and 3-methyl-para-nitrophenylbenzoate under cooperative VSC conditions. However, the resonance effect is observed at different temperatures for different solvents, which is further confirmed by thermodynamic studies. Bis-(2, 4-dinitrophenyl) oxalate doesn't respond to VSC in either of the solvent systems due to poor overlap of reactant and solvent C=O vibrational bands. Cavity detuning and other control experiments suggest that cooperative VSC of the solvent plays a crucial role in modifying the activation free-energy of the reaction. These findings, along with other observations, cement the concept of polaritonic chemistry.
Collapse
Affiliation(s)
- Jaibir Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Jyoti Lather
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| | - Jino George
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, 140306, India
| |
Collapse
|
28
|
Chuntonov L. Using mirrors to control molecular dynamics. Science 2022; 378:712. [DOI: 10.1126/science.ade9815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An optical cavity mixes molecular vibrations with light and changes chemical reactivity
Collapse
Affiliation(s)
- Lev Chuntonov
- Schulich Faculty of Chemistry and Solid-State Institute, Technion–Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
29
|
Hirai K, Ishikawa H, Takahashi Y, Hutchison JA, Uji‐i H. Autotuning of Vibrational Strong Coupling for Site‐Selective Reactions. Chemistry 2022; 28:e202201260. [DOI: 10.1002/chem.202201260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kenji Hirai
- Division of Photonics and Optical Science Research Institute for Electronic Science (RIES) Hokkaido University North 20 West 10, Kita ward Sapporo Hokkaido 001-0020 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Division of Information Science and Technology Graduate School of Information Science and Technology Hokkaido University North 14 West 9, Kita ward Sapporo Hokkaido Japan
| | - Hiroto Ishikawa
- Division of Information Science and Technology Graduate School of Information Science and Technology Hokkaido University North 14 West 9, Kita ward Sapporo Hokkaido Japan
| | - Yasufumi Takahashi
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Graduate School of Engineering Electronics Nagoya University Furocho, Chikusa-ku Nagoya-shi Aichi 464-8603 Japan
| | - James A. Hutchison
- School of Chemistry and ARC Centre of Excellence in Exciton Science The University of Melbourne Masson Rd Parkville VIC 3052 Australia
| | - Hiroshi Uji‐i
- Division of Photonics and Optical Science Research Institute for Electronic Science (RIES) Hokkaido University North 20 West 10, Kita ward Sapporo Hokkaido 001-0020 Japan
- Division of Information Science and Technology Graduate School of Information Science and Technology Hokkaido University North 14 West 9, Kita ward Sapporo Hokkaido Japan
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Heverlee Leuven Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS) Kyoto University Yohida Sakyo-ku 606-8501 Kyoto Japan
| |
Collapse
|
30
|
Lindoy LP, Mandal A, Reichman DR. Resonant Cavity Modification of Ground-State Chemical Kinetics. J Phys Chem Lett 2022; 13:6580-6586. [PMID: 35833754 DOI: 10.1021/acs.jpclett.2c01521] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent experiments have suggested that ground-state chemical kinetics can be suppressed or enhanced by coupling molecular vibrations with a cavity radiation mode. Here, we develop an analytical rate theory for cavity-modified chemical kinetics based on the Pollak-Grabert-Hänggi theory. Unlike previous work, our theory covers the complete range of solvent friction values, from the energy-diffusion-limited to the spatial-diffusion-limited regimes. We show that chemical kinetics is enhanced when bath friction is weak and suppressed when bath friction is strong. For weak bath friction, the resonant photon frequency (at which the maximum modification of the chemical rate is achieved) is close to the reactant well. In the strong friction limit, the resonant photon frequency is instead close to the barrier frequency. Finally, we observe that rate changes as a function of the photon frequency are much sharper and more sizable in the weak friction limit than in the strong friction limit.
Collapse
Affiliation(s)
- Lachlan P Lindoy
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
31
|
Campos-Gonzalez-Angulo JA, Yuen-Zhou J. Generalization of the Tavis-Cummings model for multi-level anharmonic systems: Insights on the second excitation manifold. J Chem Phys 2022; 156:194308. [PMID: 35597658 DOI: 10.1063/5.0087234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Confined electromagnetic modes strongly couple to collective excitations in ensembles of quantum emitters, producing light-matter hybrid states known as polaritons. Under such conditions, the discrete multilevel spectrum of molecular systems offers an appealing playground for exploring multiphoton processes. This work contrasts predictions from the Tavis-Cummings model in which the material is a collection of two-level systems, with the implications of considering additional energy levels with harmonic and anharmonic structures. We discuss the exact eigenspectrum, up to the second excitation manifold, of an arbitrary number N of oscillators collectively coupled to a single cavity mode in the rotating-wave approximation. Elaborating on our group-theoretic approach [New J. Phys. 23, 063081 (2021)], we simplify the brute-force diagonalization of N2 × N2 Hamiltonians to the eigendecomposition of, at most, 4 × 4 matrices for arbitrary N. We thoroughly discuss the eigenstates and the consequences of weak and strong anharmonicities. Furthermore, we find resonant conditions between bipolaritons and anharmonic transitions where two-photon absorption can be enhanced. Finally, we conclude that energy shifts in the polaritonic states induced by anharmonicities become negligible for large N. Thus, calculations with a single or few quantum emitters qualitatively fail to represent the nonlinear optical response of the collective strong coupling regime. Our work highlights the rich physics of multilevel anharmonic systems coupled to cavities absent in standard models of quantum optics. We also provide concise tabulated expressions for eigenfrequencies and transition amplitudes, which should serve as a reference for future spectroscopic studies of molecular polaritons.
Collapse
Affiliation(s)
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
32
|
Riso RR, Haugland TS, Ronca E, Koch H. Molecular orbital theory in cavity QED environments. Nat Commun 2022; 13:1368. [PMID: 35292631 PMCID: PMC8924263 DOI: 10.1038/s41467-022-29003-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
Coupling between molecules and vacuum photon fields inside an optical cavity has proven to be an effective way to engineer molecular properties, in particular reactivity. To ease the rationalization of cavity induced effects we introduce an ab initio method leading to the first fully consistent molecular orbital theory for quantum electrodynamics environments. Our framework is non-perturbative and explains modifications of the electronic structure due to the interaction with the photon field. In this work, we show that the newly developed orbital theory can be used to predict cavity induced modifications of molecular reactivity and pinpoint classes of systems with significant cavity effects. We also investigate electronic cavity-induced modifications of reaction mechanisms in vibrational strong coupling regimes.
Collapse
Affiliation(s)
- Rosario R Riso
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Tor S Haugland
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Enrico Ronca
- Istituto per i Processi Chimico Fisici del CNR (IPCF-CNR), Via G. Moruzzi, 1, 56124, Pisa, Italy
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| |
Collapse
|
33
|
Mandal A, Li X, Huo P. Theory of vibrational polariton chemistry in the collective coupling regime. J Chem Phys 2022; 156:014101. [PMID: 34998324 DOI: 10.1063/5.0074106] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We theoretically demonstrate that the chemical reaction rate constant can be significantly suppressed by coupling molecular vibrations with an optical cavity, exhibiting both the collective coupling effect and the cavity frequency modification of the rate constant. When a reaction coordinate is strongly coupled to the solvent molecules, the reaction rate constant is reduced due to the dynamical caging effect. We demonstrate that collectively coupling the solvent to the cavity can further enhance this dynamical caging effect, leading to additional suppression of the chemical kinetics. This effect is further amplified when cavity loss is considered.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Xinyang Li
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|