1
|
Kirsch TZ, Hannah TJ, Chitnis SS. Influence of Pnictogen and Ligand Framework on the Lewis Acidity and Steric Environment in Pnictogen Pincer Complexes. Chemistry 2024:e202403258. [PMID: 39436156 DOI: 10.1002/chem.202403258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
Pnictogen pincer complexes are a fascinating class of compounds due to their dynamic molecular and electronic structures, and valuable stoichiometric or catalytic reactivity. As recognition of their unique chemistry has grown, so too has the library of pincer ligands employed and pnictogen centres engaged to prepare them. Here we computationally study how the choice of pincer ligand framework and pnictogen influence the electronic and steric outcomes within the complexes obtained. The most relevant electronic parameter is the pnictogen-centred electrophilicity, which has been quantified by fluoride ion affinities and LUMO energies, while the most relevant steric parameter is the crowding around the central pnictogen, which has been quantified by the %Vbur values and visualized using steric maps. The resulting trends are analyzed with reference to binding pocket size, acceptor orbital type, electronic delocalization, π-donor strengths, and heteroatom incorporation. Thus, considering 16 ligand frameworks and 4 heavy pnictogen centres, this study provides a broad-spectrum view of stereo-electronic variation in pnictogen pincer complexes, which, together with a recent study on geometric variation in the same family, provides a substantial dataset to guide future molecular design and reactivity studies.
Collapse
Affiliation(s)
- Tamina Z Kirsch
- Department of Chemistry, Dalhousie University, 6243 Alumni Crescent, Halifax, B3H 4R2, NS, Canada
| | - Tyler J Hannah
- Department of Chemistry, Dalhousie University, 6243 Alumni Crescent, Halifax, B3H 4R2, NS, Canada
| | - Saurabh S Chitnis
- Department of Chemistry, Dalhousie University, 6243 Alumni Crescent, Halifax, B3H 4R2, NS, Canada
| |
Collapse
|
2
|
Hannibal VD, Greb L. Tetra-Amido Macrocyclic Ligand (TAML) at Silicon(IV): A Structurally Constrained, Water-Soluble Silicon Lewis Superacid. J Am Chem Soc 2024; 146:25727-25737. [PMID: 39223943 DOI: 10.1021/jacs.4c08015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tetracoordinate silicon species are typically tetrahedral, weak Lewis acids, and often sensitive to moisture. In this study, we present a tetra-amido macrocyclic ligand (TAML)-substituted Si(IV), isolated as its bis(pyridine) adduct. Due to structural constraint toward anti van't-Hof/Le Bel geometry, this compound exhibits Lewis superacidity and effectively catalyzes the hydroboration of pyridine. Kinetic and computational analyses of the catalytic cycle reveal that TAML-Si(IV) acts as a hydride transfer agent, and the hydrido silicate key intermediate is isolated. Notably, the Lewis acid is highly soluble (5 g/L) and long-term stable in water. Unlike previously described silicon-H2O adducts, the bound water becomes substantially acidified, reaching the Bro̷nsted superacidity range. A comparison of water affinity versus pKa lowering confirms our previous theory of the strength and the effect of Lewis acids. Overall, the compound's unlimited water compatibility and its mechanistically understood catalytic efficiency mark significant progress in applying structural constraint strategies for p-block element-based catalysis, while the acidification touches critical aspects of zeolite and silica surface chemistry.
Collapse
Affiliation(s)
- Valentin D Hannibal
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, Heidelberg 69120, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 275, Heidelberg 69120, Germany
| |
Collapse
|
3
|
Mukherjee N, Majumdar M. Diverse Functionality of Molecular Germanium: Emerging Opportunities as Catalysts. J Am Chem Soc 2024; 146:24209-24232. [PMID: 39172926 DOI: 10.1021/jacs.4c05498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fundamental research on germanium as the central element in compounds for bond activation chemistry and catalysis has achieved significant feats over the last two decades. Designing strategies for small molecule activations and the ultimate catalysts established capitalize on the orbital modalities of germanium, apparently imitating the transition-metal frontier orbitals. There is a growing body of examples in contemporary research implicating the tunability of the frontier orbitals through avant-garde approaches such as geometric constrained empowered reactivity, bimetallic orbital complementarity, cooperative reactivity, etc. The goal of this Perspective is to provide readers with an overview of the emerging opportunities in the field of germanium-based catalysis by perceiving the underlying key principles. This will help to convert the discrete set of findings into a more systematic vision for catalyst designs. Critical exposition on the germanium's frontier orbitals participations evokes the key challenges involved in innovative catalyst designs, wherein viewpoints are provided. We close by addressing the forward-looking directions for germanium-based catalytic manifold development. We hope that this Perspective will be motivational for applied research on germanium as a constituent of pragmatic catalysts.
Collapse
Affiliation(s)
- Nilanjana Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
4
|
Thorwart T, Greb L. Structural Flexibility is a Decisive Factor in FLP Dihydrogen Cleavage with Tetrahedral Lewis Acids: A Silane Case Study. Chemistry 2024; 30:e202401912. [PMID: 38856095 DOI: 10.1002/chem.202401912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Dihydrogen activation is the paradigmatic reaction of frustrated Lewis pairs (FLPs). While trigonal-planar Lewis acids have been well established in this transformation, tetrahedral Lewis acids are surprisingly limited. Indeed, several cases were computed as thermodynamically and kinetically feasible but exhibit puzzling discrepancies with experimental results. In the present study, a computational investigation of the factors influencing dihydrogen activation are considered by large ensemble sampling of encounter complexes, deformation energies and the activation strain model for a silicon/nitrogen FLP and compared with a boron/phosphorous FLP. The analysis adds the previously missing dimension of Lewis acids' structural flexibility as a factor that influences preexponential terms beyond pure transition state energies. It sheds light on the origin of "overfrustration" (defined herein), indicates structural constraint in Lewis acids as a linchpin for activation of weak donor substrates, and allows drawing a more refined mechanistic picture of this emblematic reactivity.
Collapse
Affiliation(s)
- Thaddäus Thorwart
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Ruppert H, Meister A, Pfretzschner R, Vieira AF, Greb L. Concatenating Structural Constraint Effects at Tin for the Sequential Generation, Stabilization, and Transfer of Acyclic Aminocarbenes. J Am Chem Soc 2024; 146. [PMID: 38604608 PMCID: PMC11048120 DOI: 10.1021/jacs.4c02446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Structural constraint approaches have been employed toward different ends in recent years, from augmenting the nucleophilicity in pyramidalized low-valent p-block compounds to enhancing the Lewis acidities at planarized tetravalent p-block elements. While previous studies exploited these effects separately, this work introduces a strategy to concatenate structural constraint approaches at individual stages of a reaction sequence in a row to unlock a synthetic path unattainable by conventional methodologies. The boosted nucleophilicity resulting from the constrained tetracoordinated calix[4]pyrrolato stannate(II) dianion enables the reductive formation of sterically unprotected acyclic aminocarbenes. These amino carbenes are stabilized at the concomitantly formed square-planar stannane(IV) as air-stable adducts. Transfer of the carbenes onto copper(I) by cooperativity of the calix[4]pyrrole ligand finalizes this protocol to hitherto unreported yet prototypical carbene complexes. Detailed spectroscopic and quantum theoretical analyses establish the synergy of structural constraints and element-ligand cooperation as the linchpin to this reaction path and its selectivity.
Collapse
Affiliation(s)
- Heiko Ruppert
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - Arne Meister
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - Ronja Pfretzschner
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - André Faria Vieira
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
6
|
Quintano M, Moura RT, Kraka E. Exploring Jahn-Teller distortions: a local vibrational mode perspective. J Mol Model 2024; 30:102. [PMID: 38478107 PMCID: PMC11315727 DOI: 10.1007/s00894-024-05882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024]
Abstract
The characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case,[ Cr ( OH 2 ) 6 ] 3 + /[ Cr ( OH 2 ) 6 ] 2 + , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case,[ Fe ( CN ) 6 ] 4 - /[ Fe ( CN ) 6 ] 3 - . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from[ Cr ( OH 2 ) 6 ] 3 + to[ Cr ( OH 2 ) 6 ] 2 + there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From[ Fe ( CN ) 6 ] 4 - to[ Fe ( CN ) 6 ] 3 - we observed an increase in covalency without altering the bond nature. Distinct π back-donation disparity could be confirmed by comparison with the isolated CN- system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications.
Collapse
Affiliation(s)
- Mateus Quintano
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX, 75275-0314, USA
| | - Renaldo T Moura
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX, 75275-0314, USA
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, PB, 58397-000, Brazil
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX, 75275-0314, USA.
| |
Collapse
|
7
|
Hannah TJ, Chitnis SS. Ligand-enforced geometric constraints and associated reactivity in p-block compounds. Chem Soc Rev 2024; 53:764-792. [PMID: 38099873 DOI: 10.1039/d3cs00765k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The geometry at an element centre can generally be predicted based on the number of electron pairs around it using valence shell electron pair repulsion (VSEPR) theory. Strategies to distort p-block compounds away from these predicted geometries have gained considerable interest due to the unique structural outcomes, spectroscopic properties or reactivity patterns engendered by such distortion. This review presents an up-to-date group-wise summary of this exciting and rapidly growing field with a focus on understanding how the ligand employed unlocks structural features, which in turn influences the associated reactivity. Relevant geometrically constrained compounds from groups 13-16 are discussed, along with selected stoichiometric and catalytic reactions. Several areas for advancement in this field are also discussed. Collectively, this review advances the notion of geometric tuning as an important lever, alongside electronic and steric tuning, in controlling bonding and reactivity at p-block centres.
Collapse
Affiliation(s)
- Tyler J Hannah
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada.
| | - Saurabh S Chitnis
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
8
|
Yadav R, Janßen P, Schorpp M, Greb L. Calix[4]pyrrolato-germane-(thf) 2: Unlocking the Anti-van't Hoff-Le Bel Reactivity of Germanium(IV) by Ligand Dissociation. J Am Chem Soc 2023; 145:17746-17754. [PMID: 37549106 PMCID: PMC10436272 DOI: 10.1021/jacs.3c04424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 08/09/2023]
Abstract
Anti-van't Hoff-Le Bel configured p-block element species possess intrinsically high reactivity and are thus challenging to isolate. Consequently, numerous elements in this configuration, including square-planar germanium(IV), remain unexplored. Herein, we follow a concept to reach anti-van't Hoff-Le Bel reactivity by ligand dissociation from a rigid calix[4]pyrrole germane in its bis(thf) adduct. While the macrocyclic ligand assures square-planar coordination in the uncomplexed form, the labile thf donors provide robustness for isolation on a multigram scale. Unique properties of a low-lying acceptor orbital imparted to germanium(IV) can be verified, e.g., by isolating an elusive anionic hydrido germanate and exploiting it for challenging bond activations. Aldehydes, water, alcohol, and a CN triple bond are activated for the first time by germanium-ligand cooperativity. Unexpected behaviors against fluoride ion donors disclose critical interferences of a putative redox-coupled fluoride ion transfer during the experimental determination of Lewis acidity. Overall, we showcase how ligand lability grants access to the uncharted chemistry of anti-van't Hoff-Le Bel germanium(IV) and line up this element as a member in the emerging class of structurally constrained p-block elements.
Collapse
Affiliation(s)
| | | | | | - Lutz Greb
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg 69120, Germany
| |
Collapse
|
9
|
Chulsky K, Malahov I, Bawari D, Dobrovetsky R. Metallomimetic Chemistry of a Cationic, Geometrically Constrained Phosphine in the Catalytic Hydrodefluorination and Amination of Ar-F Bonds. J Am Chem Soc 2023; 145:3786-3794. [PMID: 36738474 PMCID: PMC9936586 DOI: 10.1021/jacs.2c13318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis, isolation, and reactivity of a cationic, geometrically constrained σ3-P compound in the hexaphenyl-carbodiphosphoranyl-based pincer-type ligand (1+) are reported. 1+ reacts with electron-poor fluoroarenes via an oxidative addition-type reaction of the C-F bond to the PIII-center, yielding new fluorophosphorane-type species (PV). This reactivity of 1+ was used in the catalytic hydrodefluorination of Ar-F bonds with PhSiH3, and in a catalytic C-N bond-forming cross-coupling reactions between fluoroarenes and aminosilanes. Importantly, 1+ in these catalytic reactions closely mimics the mode of action of the transition metal-based catalysts.
Collapse
|
10
|
Thorwart T, Hartmann D, Greb L. Dihydrogen Activation with a Neutral, Intermolecular Silicon(IV)-Amine Frustrated Lewis Pair. Chemistry 2022; 28:e202202273. [PMID: 35861023 DOI: 10.1002/chem.202202273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 01/07/2023]
Abstract
The heterolytic cleavage of dihydrogen constitutes the hallmark reaction of frustrated Lewis pairs (FLP). While being well-established for planar Lewis acids, such as boranes or silylium ions, the observation of the primary H2 splitting products with non-planar Lewis acid FLPs remained elusive. In the present work, we report bis(perfluoro-N-phenyl-ortho-amidophenolato)silane and its application in dihydrogen activation to a fully characterized hydridosilicate. The strict design of the Lewis acid, the limited selection of the Lewis base, and the distinct reaction conditions emphasize the narrow tolerance to achieve this fascinating process with a tetrahedral Lewis acid.
Collapse
Affiliation(s)
- Thaddäus Thorwart
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Deborah Hartmann
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz Greb
- Department of Chemistry and Biochemistry-Inorganic Chemistry, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| |
Collapse
|
11
|
Volodarsky S, Bawari D, Dobrovetsky R. Dual Reactivity of a Geometrically Constrained Phosphenium Cation. Angew Chem Int Ed Engl 2022; 61:e202208401. [PMID: 35830679 PMCID: PMC9541694 DOI: 10.1002/anie.202208401] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 01/08/2023]
Abstract
A geometrically constrained phosphenium cation in bis(pyrrolyl)pyridine based NNN pincer type ligand (1+ ) was synthesized, isolated and its preliminary reactivity was studied with small molecules. 1+ reacts with MeOH and Et2 NH, activating the O-H and N-H bonds via a P-center/ligand assisted path. The reaction of 1+ with one equiv. of H3 NBH3 leads to its dehydrogenation producing 5. Interestingly, reaction of 1+ with an excess H3 NBH3 leads to phosphinidene (PI ) species coordinating to two BH3 molecules (6). In contrast, [1+ ][OTf] reacts with Et3 SiH by hydride abstraction yielding 1-H and Et3 SiOTf, while [1+ ][B(C6 F5 )4 ] reacts with Et3 SiH via an oxidative addition type reaction of Si-H bond to P-center, affording a new PV compound (8). However, 8 is not stable over time and degrades to a complex mixture of compounds in matter of minutes. Despite this, the ability of [1+ ][B(C6 F5 )4 ] to activate Si-H bond could still be tested in catalytic hydrosilylation of benzaldehyde, where 1+ closely mimics transition metal behaviour.
Collapse
Affiliation(s)
- Solomon Volodarsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University DepartmentTel Aviv69978Israel
| | - Deependra Bawari
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University DepartmentTel Aviv69978Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University DepartmentTel Aviv69978Israel
| |
Collapse
|
12
|
Volodarsky S, Bawari D, Dobrovetsky R. Dual Reactivity of a Geometrically Constrained Phosphenium Cation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Roman Dobrovetsky
- Tel Aviv University School of Chemistry Tel Aviv University, Shenkar Chemistry building, room 105 69978 Tel Aviv ISRAEL
| |
Collapse
|
13
|
Volodarsky S, Malahov I, Bawari D, Diab M, Malik N, Tumanskii B, Dobrovetsky R. Geometrically constrained square pyramidal phosphoranide. Chem Sci 2022; 13:5957-5963. [PMID: 35685804 PMCID: PMC9132080 DOI: 10.1039/d2sc01060g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/27/2022] [Indexed: 02/03/2023] Open
Abstract
Geometrical constriction of main group elements leading to a change in the reactivity of these main group centers has recently become an important tool in main group chemistry. A lot of focus on using this modern method is dedicated to group 15 elements and especially to phosphorus. In this work, we present the synthesis, isolation and preliminary reactivity study of the geometrically constrained, square pyramidal (SP) phosphoranide anion (1-). Unlike, trigonal bipyramidal (TBP) phosphoranides that were shown to react as nucleophiles while their redox chemistry was not reported, 1- reacts both as a nucleophile and reductant. The chemical oxidation of 1- leads to a P-P dimer (1-1) that is formed via the dimerization of unstable SP phosphoranyl radical (1˙), an unprecedented decay pathway for phosphoranyl radicals. Reaction of 1- with benzophenone leads via a single electron transfer (SET) to 1-OK and corresponding tetraphenyl epoxide (4).
Collapse
Affiliation(s)
- Solomon Volodarsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Irina Malahov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Deependra Bawari
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Mohand Diab
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Naveen Malik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Boris Tumanskii
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University Department Tel Aviv 69978 Israel
| |
Collapse
|
14
|
Sigmund LM, Ehlert C, Gryn'ova G, Greb L. Stereoinversion of tetrahedral p-block element hydrides. J Chem Phys 2022; 156:194113. [PMID: 35597652 DOI: 10.1063/5.0090267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The potential energy surfaces of 15 tetrahedral p-block element hydrides were screened on the multireference level. It was addressed whether stereoinversion competes against other reactions, such as reductive H2-elimination or hydride loss, and if so, along which pathway the stereomutation occurs. Importantly, stereoinversion transition structures for the ammonium cation (C4v) and the tetrahydridoborate anion (Cs) were identified for the first time. Revisiting methane's Cs symmetric inversion transition structure with the mHEAT+ protocol revealed an activation enthalpy for stereoinversion, in contrast to all earlier studies, which is 5 kJ mol-1 below the C-H bond dissociation enthalpy. Square planar structures were identified lowest in energy only for the inversion of AlH4 -, but a novel stepwise Cs-inversion was discovered for SiH4 or PH4 +. Overall, the present contribution delineates essentials of the potential energy surfaces of p-block element hydrides, while structure-energy relations offer design principles for the synthetically emerging field of structurally constrained compounds.
Collapse
Affiliation(s)
- Lukas M Sigmund
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany and Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Ganna Gryn'ova
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany and Interdisciplinary Center for Scientific Computing (IWR), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Lutz Greb
- Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195 Berlin, Germany
| |
Collapse
|
15
|
Sigmund LM, Engels E, Richert N, Greb L. Calix[4]pyrrolato gallate: square planar-coordinated gallium( iii) and its metal–ligand cooperative reactivity with CO 2 and alcohols. Chem Sci 2022; 13:11215-11220. [PMID: 36320463 PMCID: PMC9516954 DOI: 10.1039/d2sc03054c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Forcing a priori tetracoordinate atoms into planar configuration represents a promising concept for enhanced reactivity of p-block element-based systems. Herein, the synthesis, characterization, and reactivity of calix[4]pyrrolato gallates, constituting square planar-coordinated gallium(iii) atoms, are reported. Unusual structural constraint-induced Lewis acidity against neutral and anionic donors is disclosed by experiment and rationalized by computations. An energetically balanced dearomatization/rearomatization of a pyrrole unit enables fully reversible metal–ligand cooperative capture of CO2. While alcohols are found unreactive against the gallates, a rapid and selective OH-bond activation can be triggered upon protonation of the ligand. Secondary ligand–sphere modification adds a new avenue to structurally-constrained complexes that unites functional group tolerance with unconventional reactivity. Ideally square-planar coordinated gallium(iii) species is isolated and fully characterized. Spontaneous metal–ligand cooperative reactivity towards CO2 is observed, while OH-bond activation of alcohols can be triggered by protonation of the ligand.![]()
Collapse
Affiliation(s)
- Lukas M. Sigmund
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Eliane Engels
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Nick Richert
- Ruprecht-Karls-Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lutz Greb
- Freie Universität Berlin, Anorganische Chemie, Fabeckstraße 34-36, Berlin 14195, Germany
| |
Collapse
|