1
|
Wu T, Wu Z, Shi Z, Zhang L, Zhan Y, Dong Y, Zhou B, Wei F, Zhang D, Gao Y, Yin P, Zhao Y, Qi L, Long X. Tailoring Interlayer Microenvironment of 2D Layered Double Hydroxides for CO 2 Reduction with Enhanced C 2+ Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406906. [PMID: 39444070 DOI: 10.1002/smll.202406906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Indexed: 10/25/2024]
Abstract
Both the physicochemical properties of catalytic material and the structure of loaded catalyst layer (CL) on gas diffusion electrode (GDE) are of crucial importance in determining the conversion efficiency and product selectivity of carbon dioxide reduction reaction (CO2RR). However, the highly reducing reaction condition of CO2RR will lead to the uncontrollable structural and compositional changes of catalysts, making it difficult to tailor surface properties and microstructure of the real active species for favored products. Herein, the interlayer microenvironment of copper-based layered double hydroxides (LDHs) is rationally tuned by a facile ink solvent engineering, which affects both the surface characters and microstructure of CL on GDE, leading to distinct catalytic activity and product selectivity. According to series of in situ and ex situ techniques, the appropriate surface wettability and thickness of porous CL are found to play critical roles in controlling the local CO2 concentration and water dissociation steps that are key for hydrogenation during CO2RR, leading to a high Faradaic efficiency of 75.3% for C2+ products and a partial current density of 275 mA cm-2 at -0.8 V versus RHE. This work provides insights into rational design of efficient electrocatalysts toward CO2RR for multi-carbon generation.
Collapse
Affiliation(s)
- Tong Wu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| | - Zihao Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ziqian Shi
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Lihua Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| | - Yinbo Zhan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| | - Yilin Dong
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| | - Bowei Zhou
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| | - Fei Wei
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| | - Dongliang Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| | - Yukun Gao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Penggang Yin
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yixin Zhao
- School of Environment Science and Engineering, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| | - Limin Qi
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xia Long
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| |
Collapse
|
2
|
Haridas A, Mondal R, Nayak B, Ottakam Thotiyl M. Reductive Inner-Sphere Electrosynthesis of Ammonia via a Nonelectrocatalytic Outer-Sphere Redox. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19458-19466. [PMID: 39225073 DOI: 10.1021/acs.langmuir.4c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrochemistry of outer-sphere redox molecules involves an essentially intact primary coordination sphere with minimal secondary sphere adjustments, resulting in very fast electron transfer events even without a noble metal-based electrocatalyst. Departing from conventional electrocatalytic paradigms, we incorporate these minimal reaction coordinate adjustments of outer-sphere species to stimulate the electrocatalysis of energetically challenging inner-sphere substrates. Through this approach, we are able to show an intricate 8e- and 9H+ transfer inner-sphere reductive electrocatalysis at almost half the energy input of a conventional inner-sphere electron donor. This methodology of employing outer-sphere redox species has the potential to notably improve the cost and energy benefits in electrochemical transformations involving fundamental substrates such as water, CO2, N2, and many more.
Collapse
Affiliation(s)
- Akshay Haridas
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ritwik Mondal
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Bhojkumar Nayak
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Musthafa Ottakam Thotiyl
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
3
|
Sikdar N. Electrochemical CO 2 Reduction Reaction: Comprehensive Strategic Approaches to Catalyst Design for Selective Liquid Products Formation. Chemistry 2024:e202402477. [PMID: 39115935 DOI: 10.1002/chem.202402477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
The escalating concern regarding the release of CO2 into the atmosphere poses a significant threat to the contemporary efforts in mitigating climate change. Amidst a multitude of strategies for curtailing CO2 emissions, the electrochemical CO2 reduction presents a promising avenue for transforming CO2 molecules into a diverse array of valuable gaseous and liquid products, such as CO, CH3OH, CH4, HCO2H, C2H4, C2H5OH, CH3CO2H, 1-C3H7OH and others. The mechanistic investigations of gaseous products (e. g. CO, CH4, C2H4, C2H6 and others) broadly covered in the literature. There is a noticeable gap in the literature when it comes to a comprehensive summary exclusively dedicated to coherent roadmap for the designing principles for a selective catalyst all possible liquid products (such as CH3OH, C2H5OH, 1-C3H7OH, 2-C3H7OH, 1-C4H9OH, as well as other C3-C4 products like methylglyoxal and 2,3-furandiol, in addition to HCO2H, AcOH, oxalic acid and others), selectively converted by CO2 reduction. This entails a meticulous analysis to justify these approaches and a thorough exploration of the correlation between materials and their electrocatalytic properties. Furthermore, these insightful discussions illuminate the future prospects for practical applications, a facet not exhaustively examined in prior reviews.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Department of Chemistry, GITAM (Gandhi Institute of Technology and Management) School of Science Hyderabad, Telengana, 502329, India
| |
Collapse
|
4
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
5
|
Han J, Bai X, Xu X, Bai X, Husile A, Zhang S, Qi L, Guan J. Advances and challenges in the electrochemical reduction of carbon dioxide. Chem Sci 2024; 15:7870-7907. [PMID: 38817558 PMCID: PMC11134526 DOI: 10.1039/d4sc01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECO2RR) is a promising way to realize the transformation of waste into valuable material, which can not only meet the environmental goal of reducing carbon emissions, but also obtain clean energy and valuable industrial products simultaneously. Herein, we first introduce the complex CO2RR mechanisms based on the number of carbons in the product. Since the coupling of C-C bonds is unanimously recognized as the key mechanism step in the ECO2RR for the generation of high-value products, the structural-activity relationship of electrocatalysts is systematically reviewed. Next, we comprehensively classify the latest developments, both experimental and theoretical, in different categories of cutting-edge electrocatalysts and provide theoretical insights on various aspects. Finally, challenges are discussed from the perspectives of both materials and devices to inspire researchers to promote the industrial application of the ECO2RR at the earliest.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
6
|
Wang M, Cao W, Yu J, Yang D, Qi K, Zhao Y, Hua Z, Li H, Lu S. Electrocatalytic activity of CO 2 reduction to CO on cadmium sulfide enhanced by chloride anion doping. Chemistry 2024:e202303422. [PMID: 38240191 DOI: 10.1002/chem.202303422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 01/31/2024]
Abstract
The electrocatalytic CO2 reduction (ECR) to produce valuable fuel is a promising process for addressing atmospheric CO2 emissions and energy shortages. In this study, Cl-anion doped cadmium sulfide structures were directly fabricated on a nickel foam surface (Cl/CdS-NF) using an in situ hydrothermal method. The Cl-anion doping could significantly improve ECR activity for CO production in ionic liquid and acetonitrile mixed solution, compared to pristine CdS. The highest Faradaic efficiency of CO is 98.1 % on a Cl/CdS-NF-2 cathode with an excellent current density of 137.0 mA cm-2 at -2.25 V versus ferrocene/ferrocenium (Fc/Fc+ , all potentials are versus Fc/Fc+ in this study). In particular, CO Faradaic efficiencies remained above 80 % in a wide potential range of -2.05 V to -2.45 V and a maximum partial current density (192.6 mA cm-2 ) was achieved at -2.35 V. The Cl/CdS-NF-2, with appropriate Cl anions, displayed abundant active sites and a suitable electronic structure, resulting in outstanding ECR activity. Density functional theory calculations further demonstrated that Cl/CdS is beneficial for increasing the adsorption capacities of *COOH and *H, which can enhance the activity of the ECR toward CO and suppress the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Mingyan Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weiqi Cao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingkun Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dexin Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kongsheng Qi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuhua Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhixin Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongping Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Wang X, Chen Y, Li F, Miao RK, Huang JE, Zhao Z, Li XY, Dorakhan R, Chu S, Wu J, Zheng S, Ni W, Kim D, Park S, Liang Y, Ozden A, Ou P, Hou Y, Sinton D, Sargent EH. Site-selective protonation enables efficient carbon monoxide electroreduction to acetate. Nat Commun 2024; 15:616. [PMID: 38242870 PMCID: PMC10798983 DOI: 10.1038/s41467-024-44727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
Electrosynthesis of acetate from CO offers the prospect of a low-carbon-intensity route to this valuable chemical--but only once sufficient selectivity, reaction rate and stability are realized. It is a high priority to achieve the protonation of the relevant intermediates in a controlled fashion, and to achieve this while suppressing the competing hydrogen evolution reaction (HER) and while steering multicarbon (C2+) products to a single valuable product--an example of which is acetate. Here we report interface engineering to achieve solid/liquid/gas triple-phase interface regulation, and we find that it leads to site-selective protonation of intermediates and the preferential stabilization of the ketene intermediates: this, we find, leads to improved selectivity and energy efficiency toward acetate. Once we further tune the catalyst composition and also optimize for interfacial water management, we achieve a cadmium-copper catalyst that shows an acetate Faradaic efficiency (FE) of 75% with ultralow HER (<0.2% H2 FE) at 150 mA cm-2. We develop a high-pressure membrane electrode assembly system to increase CO coverage by controlling gas reactant distribution and achieve 86% acetate FE simultaneous with an acetate full-cell energy efficiency (EE) of 32%, the highest energy efficiency reported in direct acetate electrosynthesis.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Feng Li
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Zilin Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Yan Li
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Roham Dorakhan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Senlin Chu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinhong Wu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Sixing Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiyan Ni
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Dongha Kim
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Sungjin Park
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Yongxiang Liang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
8
|
Liu Y, Li H, Liu X, Wang Y, Wang L, Yang T, Jadhav AR, Zhang J, Wang Y, Wu M, Lee JY, Kim MG, Lee H. Insight into Controllable Metal-Support Interactions in Metal/Metal Electrocatalysts for Efficient Energy-Saving Hydrogen Production. ACS NANO 2024; 18:874-884. [PMID: 38112494 DOI: 10.1021/acsnano.3c09504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Controllable metal-support interaction (MSI) modulations have long been studied for improving the performance of catalysts supported on metal oxides. However, the corresponding in-depth study for metal1-metal2 (M1-M2) composited configurations is rarely achieved due to the lack of reliable models and manipulation mechanisms of MSI modifications. We modeled ruthenium on copper support (Ru-Cu) metal catalysts with negligible interfacial contact potential (e0.06 V) and investigated MSI-dependent hydrogen evolution reaction (HER) catalysis kinetics induced by an electronic hydroxyl (HO-) modifier. Comprehensive simulations and characterizations confirmed that adjusting the HO- coverage can readily realize the tailorable improvement of MSI, facilitating charge migration at the Ru-Cu interface and optimizing the overall HER pathway on active Ru. As a result, a 5/10 monolayer (ML) HO-modified catalyst (5/10 ML) exhibits superior HER activity and durability owing to the relatively stronger MSI. This catalyst also ensured sustainable and efficient hydrogen generation in a urea electrolyzer with significant energy savings. Our work provides a valuable reference for optimizing the MSI-activity relationship in M1-M2 catalysts that target more than just HER.
Collapse
Affiliation(s)
- Yang Liu
- Creative Research Institute, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yixuan Wang
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Lingling Wang
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taehun Yang
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Amol R Jadhav
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinqiang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyoyoung Lee
- Creative Research Institute, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute for Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
9
|
Wu T, Zhang L, Zhan Y, Dong Y, Tan Z, Zhou B, Wei F, Zhang D, Long X. Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO 2 Reduction. Molecules 2023; 28:8154. [PMID: 38138642 PMCID: PMC10745798 DOI: 10.3390/molecules28248154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
An efficient carbon dioxide reduction reaction (CO2RR), which reduces CO2 to low-carbon fuels and high-value chemicals, is a promising approach for realizing the goal of carbon neutrality, for which effective but low-cost catalysts are critically important. Recently, many inorganic perovskite-based materials with tunable chemical compositions have been applied in the electrochemical CO2RR, which exhibited advanced catalytic performance. Therefore, a timely review of this progress, which has not been reported to date, is imperative. Herein, the physicochemical characteristics, fabrication methods and applications of inorganic perovskites and their derivatives in electrochemical CO2RR are systematically reviewed, with emphasis on the structural evolution and product selectivity of these electrocatalysts. What is more, the current challenges and future directions of perovskite-based materials regarding efficient CO2RR are proposed, to shed light on the further development of this prospective research area.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xia Long
- Low Carbon College, Shanghai Jiaotong University, Shanghai 201306, China; (T.W.); (L.Z.); (Y.Z.); (Y.D.); (Z.T.); (B.Z.); (F.W.); (D.Z.)
| |
Collapse
|
10
|
Crandall BS, Overa S, Shin H, Jiao F. Turning Carbon Dioxide into Sustainable Food and Chemicals: How Electrosynthesized Acetate Is Paving the Way for Fermentation Innovation. Acc Chem Res 2023. [PMID: 37205870 DOI: 10.1021/acs.accounts.3c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
ConspectusThe agricultural and chemical industries are major contributors to climate change. To address this issue, hybrid electrocatalytic-biocatalytic systems have emerged as a promising solution for reducing the environmental impact of these key sectors while providing economic onboarding for carbon capture technology. Recent advancements in the production of acetate via CO2/CO electrolysis as well as advances in precision fermentation technology have prompted electrochemical acetate to be explored as an alternative carbon source for synthetic biology. Tandem CO2 electrolysis coupled with improved reactor design has accelerated the commercial viability of electrosynthesized acetate in recent years. Simultaneously, innovations in metabolic engineering have helped leverage pathways that facilitate acetate upgrading to higher carbons for sustainable food and chemical production via precision fermentation. Current precision fermentation technology has received much criticism for reliance upon food crop-derived sugars and starches as feedstock which compete with the human food chain. A shift toward electrosynthesized acetate feedstocks could help preserve arable land for a rapidly growing population.Technoeconomic analysis shows that using electrochemical acetate instead of glucose as a fermentation feedstock reduces the production costs of food and chemicals by 16% and offers improved market price stability. Moreover, given the rapid decline in utility-scale renewable electricity prices, electro-synthesized acetate may become more affordable than conventional production methods at scale. This work provides an outlook on strategies to further advance and scale-up electrochemical acetate production. Additional perspective is offered to help ensure the successful integration of electrosynthesized acetate and precision fermentation technologies. In the electrocatalytic step, it is critical that relatively high purity acetate can be produced in low-concentration electrolyte to help ensure that minimal treatment of the electrosynthesized acetate stream is needed prior to fermentation. In the biocatalytic step, it is critical that microbes with increased tolerances to elevated acetate concentrations are engineered to help promote acetate uptake and accelerate product formation. Additionally, tighter regulation of acetate metabolism via strain engineering is essential to improving cellular efficiency. The implementation of these strategies would allow the coupling of electrosynthesized acetate with precision fermentation to offer a promising approach to sustainably produce chemicals and food. Reducing the environmental impact of the chemical and agricultural sectors is necessary to avoid climate catastrophe and preserve the habitability of the planet for future generations.
Collapse
Affiliation(s)
- Bradie S Crandall
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sean Overa
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Haeun Shin
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Feng Jiao
- Center for Catalytic Science & Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
11
|
Hai G, Xue X, Feng S, Ma Y, Huang X. High-Throughput Computational Screening of Metal–Organic Frameworks as High-Performance Electrocatalysts for CO 2RR. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guangtong Hai
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiangdong Xue
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shihao Feng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuwei Ma
- Inner Mongolia Key Laboratory of Advanced Ceramics and Device, School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, P. R. China
| | - Xiubing Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
12
|
Deng B, Zhao X, Li Y, Huang M, Zhang S, Dong F. Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|