1
|
Pi Y, Qiu Z, Fan Y, Mao Q, Zhang G, Wang X, Chang HH, Chen HJ, Chen TY, Chen HY, Zhang S, Shakouri M, Pang H. Immobilization of Metal Nanoparticles to an Ultrathin Two-Dimensional Conjugated Metal-Organic Framework for Synergistic Electrocatalysis. NANO LETTERS 2024; 24:13760-13768. [PMID: 39432751 DOI: 10.1021/acs.nanolett.4c04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Metal-organic frameworks (MOFs) have been considered as promising hosts for immobilizing ultrafine metal nanoparticles (MNPs) due to their high surface area and porosity. However, electrochemical applications of such emerging composites are severely limited by the poor electrical conductivity and large size of the MOFs. Herein, we report the general synthesis of incorporating various MNPs into a conjugated MOF ultrathin nanosheet (Cu-TCPP UNS) matrix, which not only prevents agglomeration and restricts the growth of MNPs but also benefits the exposure of active sites and the transport of electrons. Specifically, the obtained PtCu@Cu-TCPP UNSs exhibited nearly two times higher mass activity for the methanol oxidation reaction (MOR) than the commercial Pt/C catalyst. Mechanistic studies reveal that the strong interaction between MNPs and Cu-TCPP promotes the oxidation of the CO intermediate. Moreover, the PtCu@Cu-TCPP UNSs can be employed as bifunctional electrocatalysts to couple MOR with the hydrogen evolution reaction for highly efficient hydrogen production.
Collapse
Affiliation(s)
- Yecan Pi
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Yu Fan
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Qixin Mao
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Xuemei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Hao-Hsiang Chang
- Department of Materials Science and Engineering, National Tsing Hua University 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Hsiang-Jung Chen
- Department of Materials Science and Engineering, National Tsing Hua University 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Tsung-Yi Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University 101, Sec. 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, S7N 2 V3, Canada
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University 225009 Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
2
|
Ge M, Li H, Zhu X, Feng Y, Wang M, Cui D, Yang H, Li S, Zheng J, Ju J, Chen X, Yuan X. Confinement Effects in Carbonized ZIF-Confined Hollow PtCo Nanospheres Enable the Methanol Oxidation Reaction. Inorg Chem 2023; 62:16582-16588. [PMID: 37751364 DOI: 10.1021/acs.inorgchem.3c02519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Confinement effects in highly porous nanostructures can effectively adjust the selectivity and kinetics of electrochemical reactions, which can boost the methanol oxidation reaction (MOR). In this work, carbonized ZIF-8-confined hollow PtCo nanospheres (PtCo@carbonized ZIF-8) were fabricated using a facile strategy. A monodisperse confined region was successfully prepared, and the dispersion of the PtCo nanoparticles (NPs) could be precisely regulated, allowing for the effective tuning of the confined region. Thus, the precise regulation of the catalytic reaction was achieved. Importantly, hollow PtCo NPs were prepared using a method based on the Kirkendall effect, and their forming mechanism was systematically investigated. Because of the confinement effects of carbonized zeolitic imidazolate framework-8 (ZIF-8), the crystal and electronic structures of the PtCo NPs were able to be effectively tuned. Our electrochemical results show that PtCo@carbonized ZIF-8 composites manifest a higher mass activity (1.4 A mgPt-1) and better stability compared to commercial Pt/C.
Collapse
Affiliation(s)
- Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Han Li
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Yanjun Feng
- Shanghai Institute of Satellite Engineering, 3666 Yuanjiang Road, Shanghai 201109, P.R. China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Ding Cui
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Hu Yang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Shengming Li
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Jianfeng Ju
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Xiaolei Chen
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, P.R. China
| |
Collapse
|
3
|
Guo LY, Li JF, Lu ZW, Zhang J, He CT. Biomass-Derived Carbon-Based Multicomponent Integration Catalysts for Electrochemical Water Splitting. CHEMSUSCHEM 2023; 16:e202300214. [PMID: 37148161 DOI: 10.1002/cssc.202300214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 05/04/2023] [Indexed: 05/07/2023]
Abstract
Electrocatalytic water splitting powered by sustainable electricity is a crucial approach for the development of new generation green hydrogen technology. Biomass materials are abundant and renewable, and the application of catalysis can increase the value of some biomass waste and turn waste into fortune. Converting economical and resource-rich biomass into carbon-based multicomponent integrated catalysts (MICs) has been considered as one of the most promising ways to obtain inexpensive, renewable and sustainable electrocatalysts in recent years. In this review, recent advances in biomass-derived carbon-based MICs towards electrocatalytic water splitting are summarized, and the existing issues and key aspects in the development of these electrocatalysts are also discussed and prospected. The application of biomass-derived carbon-based materials will bring some new opportunities in the fields of energy, environment, and catalysis, as well as promote the commercialization of new nanocatalysts in the near future.
Collapse
Affiliation(s)
- Lu-Yao Guo
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jin-Feng Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Zi-Wei Lu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jia Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Chun-Ting He
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering and College of Life Science, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
4
|
Hu Y, Liu J, Lee C, Li M, Han B, Wu T, Pan H, Geng D, Yan Q. Integration of Metal-Organic Frameworks and Metals: Synergy for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300916. [PMID: 37066724 DOI: 10.1002/smll.202300916] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Electrocatalysis is a highly promising technology widely used in clean energy conversion. There is a continuing need to develop advanced electrocatalysts to catalyze the critical electrochemical reactions. Integrating metal active species, including various metal nanostructures (NSs) and atomically dispersed metal sites (ADMSs), into metal-organic frameworks (MOFs) leads to the formation of promising heterogeneous electrocatalysts that take advantage of both components. Among them, MOFs can provide support and protection for the active sites on guest metals, and the resulting host-guest interactions can synergistically enhance the electrocatalytic performance. In this review, three key concerns on MOF-metal heterogeneous electrocatalysts regarding the catalytic sites, conductivity, and catalytic stability are first presented. Then, rational integration strategies of MOFs and metals, including the integration of metal NSs via surface anchoring, space confining, and MOF coating, as well as the integration of ADMSs either with the metal nodes/linkers or within the pores of MOFs, along with their recent progress on synergistic cooperation for specific electrochemical reactions are summarized. Finally, current challenges and possible solutions in applying these increasingly concerned electrocatalysts are also provided.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Meng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianci Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
5
|
|
6
|
Sajjadinezhad SM, Tanner K, Harvey PD. Metal-porphyrinic framework nanotechnologies in modern agricultural management. J Mater Chem B 2022; 10:9054-9080. [PMID: 36321474 DOI: 10.1039/d2tb01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metal-porphyrinic frameworks are an important subclass of metal-organic frameworks (MOFs). These porous materials exhibit a large number of applications for sustainable development and related environmental considerations. Their attractive features include (1) as a free base or metalated with zinc(II) or iron(II or III), they are environmentally benign, and (2) they absorb visible light and are emissive and semi-conducting, making them convenient tools for sensing agrochemicals. But the key feature that makes these nano-sized pristine materials or their composites in many ways superior to most MOFs is their ability to photo-generate reactive oxygen species with visible light, including singlet oxygen. This review describes important issues related to agriculture, including controlled delivery of pesticides and agrochemicals, detection of pesticides and pathogenic metals, elimination of pesticides and toxic metals, and photodynamic antimicrobial activity, and has an important implication for food safety. This comprehensive review presents the progress of the rather rapid developments of these functional and increasingly nano-sized materials and composites in the area of sustainable agriculture.
Collapse
Affiliation(s)
| | - Kevin Tanner
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| |
Collapse
|
7
|
Facile synthesis of pure silicon zeolite-confined silver nanoparticles and their catalytic activity for the reduction of 4-nitrophenol and methylene blue. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Cong W, Song P, Zhang Y, Yang S, Liu W, Zhang T, Zhou J, Wang M, Liu X. Supramolecular confinement pyrolysis to carbon-supported Mo nanostructures spanning four scales for hydroquinone determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129327. [PMID: 35709622 DOI: 10.1016/j.jhazmat.2022.129327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Metal nanostructures with high atom utilization, abundant active sites, and special electron structures should be beneficial to the electrochemical monitoring of hydroquinone (HQ), a highly toxic environmental pollutant. However, traditional nanostructures, especially non-noble metals generally suffer from severe aggregation, or consist of a mixture of nanoparticles and nanoclusters, resulting in low detection sensitivity. Herein, we precisely control the size of Mo-based nanostructures spanning four scales (viz. Mo2C nanoparticles, Mo2C nanodots, Mo nanoclusters and Mo single atoms) anchored on N, P, O co-doped carbon support. The detection sensitivity of four samples toward the HQ follows the orders of Mo single atoms>Mo2C nanodots>Mo nanoclusters>Mo2C nanoparticles. The catalytic ability of four catalysts is investigated, also showing the same order. The supported Mo single atoms show superior electro-sensing performance for HQ with wide linear range (0.02-200 μM) and low detection limit (0.005 μM), surpassing most previously reported catalysts. Moreover, the coexistence of dihydroxybenzene isomers of catechol (CC) and resorcinol (RC) does not interfere with the detection of HQ on the Mo single-atom sensor. This work opens up a polyoxometalate-based confinement pyrolysis approach to constructing ultrafine metal-based nanostructures spanning multiple-scales for efficient electrochemical applications.
Collapse
Affiliation(s)
- Wenhua Cong
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Pin Song
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yong Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Su Yang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weifeng Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Meiling Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
9
|
Surfactant-Free Synthesis of Ag Nanoparticles Loaded ZIF-8 as a Catalytic Filter Device for Continuous Reduction of 4-Nitrophenol. Catal Letters 2022. [DOI: 10.1007/s10562-022-03994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|