1
|
Qiu X, Pohl E, Jung A, Cai Q, Su H, Fuhr O, Schepers U, Bräse S. Modulating the photolysis of aryl azides in a supramolecular host to develop photoactivatable fluorophores. Chem Commun (Camb) 2024; 60:12856-12859. [PMID: 39412543 DOI: 10.1039/d4cc03907f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Photolysis of aryl azides is a convenient method to approach more functionalized systems in chemical biology. Here, we present a set of photoactivatable aryl azides that undergo controlled reaction pathways within the cucurbit[7]uril (CB7) cavity upon photolysis. The fluorescence turn-on process is utilized for bioimaging.
Collapse
Affiliation(s)
- Xujun Qiu
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Eric Pohl
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - André Jung
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Qianyu Cai
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Haopu Su
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Feng N, Peng Z, Zhang X, Lin Y, Hu L, Zheng L, Tang BZ, Zhang J. Strategically engineered Au(I) complexes for orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death. Nat Commun 2024; 15:8187. [PMID: 39294133 PMCID: PMC11410803 DOI: 10.1038/s41467-024-52458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Cancer is a significant cause of death around the world, and for many varieties, treatment is not successful. Therefore, there is a need for the development of innovative, efficacious, and precisely targeted treatments. Here, we develop a series of Au(I) complexes (1-4) through rational manipulation of ligand structures, thereby achieving tumor cell specific targeting and orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death. A comprehensive exploration based on in vitro and in vivo female mice experimentation shows that complex 4 exhibits proficiency in specific tumor imaging, endoplasmic reticulum targeting, and has robust therapeutic capabilities. Mechanistic elucidation indicates that the anticancer effect derives from the synergistic actions of thioredoxin reductase inhibition, highly efficient reactive oxygen species production and immunogenic cell death. This work presents a report on a robust Au(I) complex integrating three therapeutic modalities within a singular system. The strategy presented in this work provides a valuable reference for the development of high-performance therapeutic agents.
Collapse
Affiliation(s)
- Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Peng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yiling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Chen Z, Chen L, Lyu TD, Weng S, Xie Y, Jin Y, Wu O, Jones M, Kwan K, Makvnadi P, Li B, Sharopov F, Ma C, Li H, Wu A. Targeted mitochondrial nanomaterials in biomedicine: Advances in therapeutic strategies and imaging modalities. Acta Biomater 2024; 186:1-29. [PMID: 39151665 DOI: 10.1016/j.actbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Mitochondria, pivotal organelles crucial for energy generation, apoptosis regulation, and cellular metabolism, have spurred remarkable advancements in targeted material development. This review surveys recent breakthroughs in targeted mitochondrial nanomaterials, illuminating their potential in drug delivery, disease management, and biomedical imaging. This review approaches from various application perspectives, introducing the specific applications of mitochondria-targeted materials in cancer treatment, probes and imaging, and diseases treated with mitochondria as a therapeutic target. Addressing extant challenges and elucidating potential therapeutic mechanisms, it also outlines future development trajectories and obstacles. By comprehensively exploring the diverse applications of targeted mitochondrial nanomaterials, this review aims to catalyze innovative treatment modalities and diagnostic approaches in medical research. STATEMENT OF SIGNIFICANCE: This review presents the latest advancements in mitochondria-targeted nanomaterials for biomedical applications, covering diverse fields such as cancer therapy, bioprobes, imaging, and the treatment of various systemic diseases. The novelty and significance of this work lie in its systematic analysis of the intricate relationship between mitochondria and different diseases, as well as the ingenious design strategies employed to harness the therapeutic potential of nanomaterials. By providing crucial insights into the development of mitochondria-targeted nanomaterials and their applications, this review offers a valuable resource for researchers working on innovative treatment modalities and diagnostic approaches. The scientific impact and interest to the readership lie in the identification of promising avenues for future research and the potential for clinical translation of these cutting-edge technologies.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| | - Linjie Chen
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Tai Dong Lyu
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Shoutao Weng
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Yihao Xie
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Yuxin Jin
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Ouqiang Wu
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham B31 2AP, UK
| | - Kenny Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Pooyan Makvnadi
- University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India; Centre of Research Impact and Outreach, Chitkara University, Rajpura, Punjab 140417, India
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College Soochow University, PR China
| | - Farukh Sharopov
- V.I. Nikitin Chemistry Institute of Tajikistan National Academy of Sciences, Dushanbe 734063, Tajikistan
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China.
| | - Aimin Wu
- Department of Orthopaedics Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou, Zhejiang Province 325035, PR China.
| |
Collapse
|
4
|
Peng Y, Mo R, Yang M, Xie H, Ma F, Ding Z, Wu S, Lam JWY, Du J, Zhang J, Zhao Z, Tang BZ. Mitochondria-Targeting AIEgens as Pyroptosis Inducers for Boosting Type-I Photodynamic Therapy of Tongue Squamous Cell Carcinoma. ACS NANO 2024. [PMID: 39268809 DOI: 10.1021/acsnano.4c06808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The development of a photosensitizer (PS) that induces pyroptosis could be a star for photodynamic therapy (PDT), particularly with type-I PSs that produce reactive oxygen species (ROS) in a hypoxic tumor microenvironment. Since pyroptosis is a recently characterized cell death pathway, it holds promise for advancing PDT in oncology, with PSs playing a critical role. Herein, we develop a PS named Th-M with aggregation-induced emission (AIE) characteristics for type-I PDT against tongue squamous cell carcinoma (TSCC). Th-M stands out for its exceptional mitochondrial-targeting ability, which triggers mitochondrial dysfunction and leads to Caspase-3 and Gasdermin E (GSDME) cleavage under white light irradiation, inducing pyroptosis in TSCC cells. Our studies verify the effectiveness of Th-M in destroying cancer cells in vitro and suppressing tumor growth in vivo while also demonstrating a favorable biosafety profile. This work pioneers the application of Th-M as a mitochondria-targeted, type-I PS that leverages the mechanism of pyroptosis, offering a potent approach for the treatment of TSSC with promising implications for future PDT of cancers.
Collapse
Affiliation(s)
- Ying Peng
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Rufan Mo
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Mingwang Yang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Huilin Xie
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Fulong Ma
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Zeyang Ding
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Juan Du
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Jianquan Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
5
|
He W, Kwok RTK, Qiu Z, Zhao Z, Tang BZ. A Holistic Perspective on Living Aggregate. J Am Chem Soc 2024; 146:5030-5044. [PMID: 38359354 DOI: 10.1021/jacs.3c09892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Aggregate is one of the most extensive existing modes of matters in the world. Besides the research objectives of inanimate systems in physical science, the entities in life science can be regarded as living aggregates, which are far from being thoroughly understood despite the great advances in molecular biology. Molecular biology follows the research philosophy of reductionism, which generally reduces the whole into parts to study. Although reductionism benefits the understanding of molecular behaviors, it encounters limitations when extending to the aggregate level. Holism is another epistemology comparable to reductionism, which studies objectives at the aggregate level, emphasizing the interactions and synergetic/antagonistic effects of a group of composed single entities in determining the characteristics of a whole. As a representative of holism, aggregation-induced emission (AIE) materials have made great achievements in the past two decades in both physical and life science. In particular, the unique properties of AIE materials endow them with in situ and real-time visual methods to investigate the inconsistency between microscopic molecules and macroscopic substances, offering researchers excellent toolkits to study living aggregates. The applications of AIE materials in life science are still in their infancy and worth expanding. In this Perspective, we summarize the research progress of AIE materials in unveiling some phenomena and processes of living systems, aiming to provide a general research approach from the viewpoint of holism. At last, insights into what we can do in the near future are also raised and discussed.
Collapse
Affiliation(s)
- Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park Nanshan, Shenzhen 518057, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park Nanshan, Shenzhen 518057, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
6
|
Huang B, Wang K, Zhang J, Yan H, Zhao H, Han L, Han T, Tang BZ. Targeted and Long-Term Fluorescence Imaging of Plant Cytomembranes Using Main-Chain Charged Polyelectrolytes with Aggregation-Induced Emission. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38349972 DOI: 10.1021/acsami.3c16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Fluorescent polyelectrolytes have attracted tremendous attention due to their unique properties and wide applications. However, current research objects of fluorescent polyelectrolytes mainly focus on side-chain charged polyelectrolytes, and the applications of polyelectrolytes in plant cytomembrane imaging with long time and high specificity still remain challenging. Herein, long-time and targeted fluorescence imaging of plant cytomembranes was achieved for the first time using main-chain charged polyelectrolytes (MCCPs) with aggregation-induced emission (AIE). A series of MCCPs were designed and synthesized, among which the red-emissive and AIE-active MCCP with a triphenylamine linker and a cyano group around the cationic ring-fused heterocyclic core showed the best fluorescence imaging performance of plant cells. Unlike other MCCPs and its neutral form of polymer, this cyano-substituted conjugated polyelectrolyte can specifically target the cytomembrane of plant cells within a short staining time with many advantages, including wash-free staining, high photostability and imaging integrity, excellent durability (at least 12 h), and low biotoxicity. In addition to onion epidermal cells, this AIE fluorescence probe also shows good imaging capabilities for other kinds of plant cells such as Glycine max and Vigna radiata. Such an AIE-active MCCP-based imaging system provides an effective design strategy to develop fluorescence probes with high specificity and long-term imaging ability toward plant plasma membranes.
Collapse
Affiliation(s)
- Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jinchuan Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hewei Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hui Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
7
|
Schauenburg D, Weil T. Chemical Reactions in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303396. [PMID: 37679060 PMCID: PMC10885656 DOI: 10.1002/advs.202303396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Indexed: 09/09/2023]
Abstract
The term "in vivo ("in the living") chemistry" refers to chemical reactions that take place in a complex living system such as cells, tissue, body liquids, or even in an entire organism. In contrast, reactions that occur generally outside living organisms in an artificial environment (e.g., in a test tube) are referred to as in vitro. Over the past decades, significant contributions have been made in this rapidly growing field of in vivo chemistry, but it is still not fully understood, which transformations proceed efficiently without the formation of by-products or how product formation in such complex environments can be characterized. Potential applications can be imagined that synthesize drug molecules directly within the cell or confer new cellular functions through controlled chemical transformations that will improve the understanding of living systems and develop new therapeutic strategies. The guiding principles of this contribution are twofold: 1) Which chemical reactions can be translated from the laboratory to the living system? 2) Which characterization methods are suitable for studying reactions and structure formation in complex living environments?
Collapse
Affiliation(s)
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| |
Collapse
|
8
|
Liu J, Zhao B, Zhang X, Guan D, Sun K, Zhang Y, Liu Q. Thiolation for Enhancing Photostability of Fluorophores at the Single-Molecule Level. Angew Chem Int Ed Engl 2024; 63:e202316192. [PMID: 37975636 DOI: 10.1002/anie.202316192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Fluorescent probes are essential for single-molecule imaging. However, their application in biological systems is often limited by the short photobleaching lifetime. To overcome this, we developed a novel thiolation strategy for squaraine dyes. By introducing thiolation of the central cyclobutene of squaraine (thio-squaraine), we observed a ≈5-fold increase in photobleaching lifetime. Our single-molecule data analysis attributes this improvement to improved photostability resulting from thiolation. Interestingly, bulk measurements show rapid oxidation of thio-squaraine to its oxo-analogue under irradiation, giving the perception of inferior photostability. This discrepancy between bulk and single-molecule environments can be ascribed to the factors in the latter, including larger intermolecular distances and restricted mobility, which reduce the interactions between a fluorophore and reactive oxygen species produced by other fluorophores, ultimately impacting photobleaching and photoconversion rate. We demonstrate the remarkable performance of thio-squaraine probes in various imaging buffers, such as glucose oxidase with catalase (GLOX) and GLOX+trolox. We successfully employed these photostable probes for single-molecule tracking of CD56 membrane protein and monitoring mitochondria movements in live neurons. CD56 tracking revealed distinct motion states and the corresponding protein fractions. This investigation is expected to propel the development of single-molecule imaging probes, particularly in scenarios where bulk measurements show suboptimal performance.
Collapse
Affiliation(s)
- Jinyang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Bingjie Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Xuebo Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Daoming Guan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Kuangshi Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
9
|
Segawa S, He X, Tang BZ. Metal-free click and bioorthogonal reactions of aggregation-induced emission probes for lighting up living systems. LUMINESCENCE 2024; 39:e4619. [PMID: 37987236 DOI: 10.1002/bio.4619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
In 2002, two transformative research paradigms emerged: 'click chemistry' and 'aggregation-induced emission (AIE),' both leaving significant impacts on early 21st-century academia. Click chemistry, which describes the straightforward and reliable reactions for linking two building blocks, has simplified complex molecular syntheses and functionalization, propelling advancements in polymer, material, and life science. In particular, nontoxic, metal-free click reactions involving abiotic functional groups have matured into bioorthogonal reactions. These are organic ligations capable of selective and efficient operations even in congested living systems, therefore enabling in vitro to in vivo biomolecular labelling. Concurrently, AIE, a fluorogenic phenomenon of twisted π-conjugated compounds upon aggregation, has offered profound insight into solid-state photophysics and promoted the creation of aggregate materials. The inherent fluorogenicity and aggregate-emission properties of AIE luminogens have found extensive application in biological imaging, characterized by their high-contrast and photostable fluorescent signals. As such, the convergence of these two domains to yield efficient labelling with excellent fluorescence images is an anticipated progression in recent life science research. In this review, we intend to showcase the synergetic applications of AIE probes and metal-free click or bioorthogonal reactions, highlighting both the achievements and the unexplored avenues in this promising field.
Collapse
Affiliation(s)
- Shinsuke Segawa
- Department of Chemical and Biological Engineering, School of Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Wu X, Zhang R, Li Y, Gai Y, Feng T, Kou J, Kong F, Li L, Tang B. Rational Design of MMP-Independent Near-Infrared Fluorescent Probes for Accurately Monitoring Mitochondrial Viscosity. Anal Chem 2023; 95:7611-7619. [PMID: 37134014 DOI: 10.1021/acs.analchem.3c00436] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondrial viscosity affects metabolite diffusion and mitochondrial metabolism and is associated with many diseases. However, the accuracy of mitochondria-targeting fluorescent probes in measuring viscosity is unsatisfactory because these probes can diffuse from mitochondria during mitophagy with a decreased mitochondrial membrane potential (MMP). To avoid this problem, by incorporating different alkyl side chains into dihydroxanthene fluorophores (denoted as DHX), we developed six near-infrared (NIR) probes for the accurate detection of mitochondrial viscosity, and the sensitivity to viscosity and the mitochondrial targeting and anchoring capability of these probes increased by increasing the alkyl chain length. Among them, DHX-V-C12 had a highly selective response to viscosity variations with minimum interference from polarity, pH, and other biologically relevant species. Furthermore, DHX-V-C12 was used to monitor the mitochondrial viscosity changes of HeLa cells treated by ionophores (nystatin, monensin) or under starvation conditions. We hope that this mitochondrial targeting and anchoring strategy based on increasing the alkyl chain length will be a general strategy for the accurate detection of mitochondrial analytes, enabling the accurate study of mitochondrial functions.
Collapse
Affiliation(s)
- Xue Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ruixin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ying Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yitong Gai
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Tingting Feng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Junjie Kou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
11
|
Zhang Z, Deng Z, Zhu L, Zeng J, Cai XM, Qiu Z, Zhao Z, Tang BZ. Aggregation-induced emission biomaterials for anti-pathogen medical applications: detecting, imaging and killing. Regen Biomater 2023; 10:rbad044. [PMID: 37265605 PMCID: PMC10229374 DOI: 10.1093/rb/rbad044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 06/03/2023] Open
Abstract
Microbial pathogens, including bacteria, fungi and viruses, greatly threaten the global public health. For pathogen infections, early diagnosis and precise treatment are essential to cut the mortality rate. The emergence of aggregation-induced emission (AIE) biomaterials provides an effective and promising tool for the theranostics of pathogen infections. In this review, the recent advances about AIE biomaterials for anti-pathogen theranostics are summarized. With the excellent sensitivity and photostability, AIE biomaterials have been widely applied for precise diagnosis of pathogens. Besides, different types of anti-pathogen methods based on AIE biomaterials will be presented in detail, including chemotherapy and phototherapy. Finally, the existing deficiencies and future development of AIE biomaterials for anti-pathogen applications will be discussed.
Collapse
Affiliation(s)
- Zicong Zhang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lixun Zhu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Jialin Zeng
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xu Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Rescources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zheng Zhao
- Correspondence address. E-mail: (Z.Z.); (B.Z.T.)
| | | |
Collapse
|
12
|
Ji S, Li S, Gao H, Wang J, Wang K, Nan W, Chen H, Hao Y. An AIEgen-based "turn-on" probe for sensing cancer cells and tiny tumors with high furin expression. Biomater Sci 2023; 11:2221-2229. [PMID: 36748329 DOI: 10.1039/d2bm01979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peptide-aggregation-induced emission (AIE) luminogen (AIEgen) conjugates are widely used in the bioimaging field for their good resistance to photobleaching, red and near-infrared light emission, good biocompatibility, etc. However, their peptides are mainly negatively charged and the positively charged peptide-AIEgen conjugates are rarely used in in vivo imaging due to their high non-specific interaction with protein to cause "false-positive" results and their potential risk of triggering hemolysis. Herein, we introduce a black hole quencher 3 (BHQ3) to RVRRGFF-AIE (FA) to build a "turn-on" probe, named BHQ3-RVRRGFF-AIE (BFA). Compared with FA, BFA has advantages in the anti-interference ability for different proteins and many solution environments. But, both BFA and FA have high risks of inducing hemolysis, which restricts their further application. Through co-assembly with poly-γ-glutamic acid (γ-PGA), molecular probes BFA and FA are formed into PGA-BFA and PGA-FA nanoparticles with high biocompatibility and suppressed phototoxicity. Cell studies show that PGA-BFA can discriminate cancer cells with high furin expression from low furin-expressed cancer cells and normal cells. In vivo studies show that PGA-BFA can light up tiny tumors in the abdominal cavity with a better tumor-to-intestine ratio (3.14) than that of PGA-FA (1.47), which is helpful for the accurate excision of tiny tumors. This study will advance the development of constructing good biosafety probes with a high signal-to-noise ratio for fluorescence image-guided cancer surgery.
Collapse
Affiliation(s)
- Shenglu Ji
- The Key Laboratory of Biomedical Materials, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China. .,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Songge Li
- The Key Laboratory of Biomedical Materials, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Heqi Gao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiayang Wang
- The Key Laboratory of Biomedical Materials, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Kaiyuan Wang
- The Key Laboratory of Biomedical Materials, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Wenbin Nan
- The Key Laboratory of Biomedical Materials, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China. .,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hongli Chen
- The Key Laboratory of Biomedical Materials, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China. .,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Yongwei Hao
- The Key Laboratory of Biomedical Materials, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
13
|
Yu J, Jiang G, Wang J. In Vivo Fluorescence Imaging-Guided Development of Near-Infrared AIEgens. Chem Asian J 2023; 18:e202201251. [PMID: 36637344 DOI: 10.1002/asia.202201251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/14/2023]
Abstract
In vivo fluorescence imaging has received extensive attention due to its distinguished advantages of excellent biosafety, high sensitivity, dual temporal-spatial resolution, real-time monitoring ability, and non-invasiveness. Aggregation-induced emission luminogens (AIEgens) with near-infrared (NIR) absorption and emission wavelengths are ideal candidate for in vivo fluorescence imaging for their large Stokes shift, high brightness and superior photostability. NIR emissive AIEgens provide deep tissue penetration depth as well as low interference from tissue autofluorescence. Here in this review, we summarize the molecular engineering strategies for constructing NIR AIEgens with high performances, including extending π-conjugation system and strengthen donor (D)-acceptor (A) interactions. Then the encapsulation strategies for increasing water solubility and biocompatibility of these NIR AIEgens are highlighted. Finally, the challenges and prospect of fabricating NIR AIEgens for in vivo fluorescence imaging are also discussed. We hope this review would provide some guidelines for further exploration of new NIR AIEgens.
Collapse
Affiliation(s)
- Jia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
14
|
Zuo J, Zhu E, Yin W, Yao C, Liao J, Ping X, Zhu Y, Cai X, Rao Y, Feng H, Zhang K, Qian Z. Long-term spatiotemporal and highly specific imaging of the plasma membrane of diverse plant cells using a near-infrared AIE probe. Chem Sci 2023; 14:2139-2148. [PMID: 36845931 PMCID: PMC9945320 DOI: 10.1039/d2sc05727a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Fluorescent probes are valuable tools to visualize plasma membranes intuitively and clearly and their related physiological processes in a spatiotemporal manner. However, most existing probes have only realized the specific staining of the plasma membranes of animal/human cells within a very short time period, while almost no fluorescent probes have been developed for the long-term imaging of the plasma membranes of plant cells. Herein, we designed an AIE-active probe with NIR emission to achieve four-dimensional spatiotemporal imaging of the plasma membranes of plant cells based on a collaboration approach involving multiple strategies, demonstrated long-term real-time monitoring of morphological changes of plasma membranes for the first time, and further proved its wide applicability to plant cells of different types and diverse plant species. In the design concept, three effective strategies including the similarity and intermiscibility principle, antipermeability strategy and strong electrostatic interactions were combined to allow the probe to specifically target and anchor the plasma membrane for an ultralong amount of time on the premise of guaranteeing its sufficiently high aqueous solubility. The designed APMem-1 can quickly penetrate cell walls to specifically stain the plasma membranes of all plant cells in a very short time with advanced features (ultrafast staining, wash-free, and desirable biocompatibility) and the probe shows excellent plasma membrane specificity without staining other areas of the cell in comparison to commercial FM dyes. The longest imaging time of APMem-1 can be up to 10 h with comparable performance in both imaging contrast and imaging integrity. The validation experiments on different types of plant cells and diverse plants convincingly proved the universality of APMem-1. The development of plasma membrane probes with four-dimensional spatial and ultralong-term imaging ability provides a valuable tool to monitor the dynamic processes of plasma membrane-related events in an intuitive and real-time manner.
Collapse
Affiliation(s)
- Jiaqi Zuo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Engao Zhu
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Wenjing Yin
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Chuangye Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Jiajia Liao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Xinni Ping
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Yuqing Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Xuting Cai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Hui Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Kewei Zhang
- College of Life Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Material Sciences, Zhejiang Normal University Yingbin Road 688 Jinhua 321004 China
| |
Collapse
|
15
|
Zhang Z, He W, Deng Z, Liu Y, Wen H, Wang Y, Ye Z, Kin Kwok RT, Qiu Z, Zhao Z, Tang BZ. A clickable AIEgen for visualization of macrophage-microbe interaction. Biosens Bioelectron 2022; 216:114614. [PMID: 35995026 DOI: 10.1016/j.bios.2022.114614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
Visualization of immunocyte-microbe interaction is of great importance to reveal the physiological role and working mechanism of innate and adaptive immune system. The lack of rapid and stable microbial labeling platform and insufficient understanding of macrophage-microbe interaction may delay precautions that could be made. In this contribution, a clickable AIEgen, CDPP-NCS, containing a cationic pyridinium moiety for targeting bacteria and an isothiocyanate moiety for covalently bonding with amine groups, is successfully developed. With the advantages of excellent photostability and rapid bioconjugation with amine groups on the bacterial envelope, the processes of macrophage-bacterium interactions with subcellular resolution has been successfully captured using this clickable AIE probe. Therefore, the new clickable AIEgen is a powerful tool to study the interaction between cell and bacterium.
Collapse
Affiliation(s)
- Zicong Zhang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province, 518057, China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yucheng Wang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province, 518057, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Yu W, Yu X, Qiu Z, Xu C, Gao M, Zheng J, Zhang J, Wang G, Cheng Y, Zhu M. 1+1>2: Fiber Synergy in Aggregation‐Induced Emission. Chemistry 2022; 28:e202201664. [DOI: 10.1002/chem.202201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Wanting Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junjie Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| |
Collapse
|