1
|
Singh Y, Schuldt MP, Rominger F, Mastalerz M. High-Yielding Nanobelt Formation by Chirality-Assisted Synthesis. Angew Chem Int Ed Engl 2025; 64:e202414059. [PMID: 39401168 DOI: 10.1002/anie.202414059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 11/17/2024]
Abstract
Shape-persistent conjugated nanobelts (CNBs) are fascinating synthetic targets. However, in most cases these are made in low overall yields by applying strategies of macrocyclization followed by (multiple) ring fusion reactions for nanobelt formation. Here, we describe the high yielding synthesis of enantiopure chiral nanobelts in 84 % yield by applying chirality-assisted synthesis (CAS). The chiral nanobelts were investigated by UV/Vis and CD spectroscopy. By DFT calculations the aromaticity of these structures is discussed.
Collapse
Affiliation(s)
- Yogendra Singh
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Dong S, Han Y, Tong Z, Wang J, Zhang Y, Li A, Gopalakrishna TY, Tian H, Chi C. Facile synthesis and characterization of aza-bridged all-benzenoid quinoidal figure-eight and cage molecules. Chem Sci 2024; 15:9087-9095. [PMID: 38903229 PMCID: PMC11186326 DOI: 10.1039/d3sc02707d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/27/2024] [Indexed: 06/22/2024] Open
Abstract
Synthesis of conjugated compounds with unusual shape-persistent structures remains a challenge. Herein, utilizing thermodynamically reversible intermolecular Friedel-Crafts alkylation, a dynamic covalent chemistry (DCC) reaction, we facilely synthesized a figure-eight shaped macrocycle FEM and cage molecules CATPA/CACz. X-ray crystallographic analysis confirmed the chemical geometries of tetracation FEM4+(PF6 -)4 and hexacation CACz6+(SbF6 -)6. FEM and CATPA displayed higher photoluminescence quantum yield in solid states compared to that in solution, whereas CACz gave the reverse result. DFT calculations showed that fluorescence-related frontier molecular orbital profiles are mainly localized on their arms consisting of a p-quinodimethane (p-QDM) unit and two benzene rings of triphenylamine or carbazole. Owing to their space-confined structures, variable-temperature 1H NMR measurements showed that FEM, CATPA and FEM4+ have intramolecular restricted motion of phenyl rings on their chromophore arms. Accordingly, FEM and CATPA with flexible triphenylamine subunits displayed aggregation-induced emission behavior (AIE), whereas CACz with a rigid carbazole subunits structure showed no AIE behavior.
Collapse
Affiliation(s)
- Shaoqiang Dong
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| | - Zekun Tong
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Jinfeng Wang
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Yishan Zhang
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Aisen Li
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin University Tianjin 300072 China
| | | | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore
| |
Collapse
|
3
|
Du Z, Xie J, Liu Y, Tang Y, Chen Q, Li X, Zhu K. A π-extended molecular belt with selective binding capability for fullerene C 70. Chem Commun (Camb) 2024; 60:6387-6390. [PMID: 38831735 DOI: 10.1039/d4cc01966k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A molecular belt incorporating naphthalene moieties, featuring an ellipsoidal cavity, was precisely engineered through bottom-up synthesis. Its pre-arranged geometry exhibits excellent complementarity to fullerene C70, resulting in remarkable selective binding ability (K = 1.3 × 106 M-1) for C70 compared to C60 (K = 176 M-1), forming a 1 : 1 complex. This superiority was unequivocally demonstrated by the single crystal structure of the complex, which revealed outstanding concave-convex shape complementarity between the two components. This highlights the potential application of molecular belts in the purification and separation of fullerenes.
Collapse
Affiliation(s)
- Zhenglin Du
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Jialin Xie
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yandie Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yisong Tang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qing Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xia Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Iannace V, Sabrià C, Xu Y, Delius MV, Imaz I, Maspoch D, Feixas F, Ribas X. Regioswitchable Bingel Bis-Functionalization of Fullerene C 70 via Supramolecular Masks. J Am Chem Soc 2024; 146:5186-5194. [PMID: 38311922 PMCID: PMC10910506 DOI: 10.1021/jacs.3c10808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
Isomer-pure functionalized fullerenes are required to boost the development of fullerene chemistry in any field, but their multiple functionalization renders a mixture of regioisomers that are very difficult to purify by chromatography. For the specific case of C70, its nonspherical geometry makes its regioselective functionalization more challenging than that of spherical C60. In this work, the supramolecular mask approach is applied for the first time to C70, which is encapsulated in two different nanocapsules to achieve the Bingel bis-cyclopropanation at α-bonds of opposite poles. Based on the tetragonal prismatic geometry imposed by the smaller supramolecular mask tested, the obtained major bis-adduct is completely reversed (major 5 o'clock) compared to bare C70 functionalization (major 2 o'clock). Moreover, by further restricting the accessibility of C70 using a three-shell Matryoshka mask and dibenzyl-bromomalonate, a single regiospecific 2 o'clock bis-isomer is obtained, owing to the perfect complementarity of the mask and the addend steric properties. The outcome of the reactions is fully explained at the molecular level by means of a thorough molecular dynamics (MD) study of the accessibility of the α-bonds to produce the different bis-adducts.
Collapse
Affiliation(s)
- Valentina Iannace
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona,
Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Clara Sabrià
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona,
Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Youzhi Xu
- Institute
of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Inhar Imaz
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Daniel Maspoch
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Catalonia, Spain
- ICREA, Passeig de Lluís Companys
23, 08010 Barcelona, Catalonia, Spain
| | - Ferran Feixas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona,
Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Xavi Ribas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona,
Campus Montilivi, 17003 Girona, Catalonia, Spain
| |
Collapse
|
5
|
Chang X, Xu Y, von Delius M. Recent advances in supramolecular fullerene chemistry. Chem Soc Rev 2024; 53:47-83. [PMID: 37853792 PMCID: PMC10759306 DOI: 10.1039/d2cs00937d] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).
Collapse
Affiliation(s)
- Xingmao Chang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| |
Collapse
|
6
|
George G, Stasyuk OA, Solà M, Stasyuk AJ. A step towards rational design of carbon nanobelts with tunable electronic properties. NANOSCALE 2023; 15:17373-17385. [PMID: 37791958 DOI: 10.1039/d3nr04045c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Belt-shaped aromatic compounds are among the most attractive classes of radial π-conjugated nanocarbon molecules with unique physical and chemical properties. In this work, we computationally studied a number of all-carbon and heteroatom-bridged nanobelts, as well as their inclusion complexes with fullerene C60. Our results provide a useful guide for modulating the electronic properties of the nanobelts. An in-depth analysis of the ground and excited state properties of their complexes has allowed us to establish structure-property relationships and propose simple principles for the design of nanobelts with improved electron-donating properties suitable for photovoltaic applications.
Collapse
Affiliation(s)
- G George
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - O A Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - M Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - A J Stasyuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| |
Collapse
|
7
|
Mei P, Morimoto H, Okada Y, Matsuo K, Hayashi H, Saeki A, Yamada H, Aratani N. Complexation study of a 1,3-phenylene-bridged cyclic hexa-naphthalene with fullerenes C 60 and C 70 in solution and 1D-alignment of fullerenes in the crystals. RSC Adv 2023; 13:33459-33462. [PMID: 38025867 PMCID: PMC10644901 DOI: 10.1039/d3ra06526j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
To investigate the host ability of a simple macrocycle, 1,3-phenylene-bridged naphthalene hexamer N6, we evaluated the complexation of N6 with fullerenes in toluene and in the crystals. The complexes in the solid-state demonstrate the one-dimensional alignment of fullerenes. The single-crystals of the C60@N6 composite have semiconductive properties revealed by photoconductivity measurements.
Collapse
Affiliation(s)
- Peifeng Mei
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hirofumi Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Yuta Okada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Kyohei Matsuo
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hironobu Hayashi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita 565-0871 Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma 630-0192 Japan
| |
Collapse
|
8
|
Bera S, Das S, Melle‐Franco M, Mateo‐Alonso A. An Organic Molecular Nanobarrel that Hosts and Solubilizes C 60. Angew Chem Int Ed Engl 2023; 62:e202216540. [PMID: 36469042 PMCID: PMC10107786 DOI: 10.1002/anie.202216540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Organic cages have gained increasing attention in recent years as molecular hosts and porous materials. Among these, barrel-shaped cages or molecular nanobarrels are promising systems to encapsulate large hosts as they possess windows of the same size as their internal cavity. However, these systems have received little attention and remain practically unexplored despite their potential. Herein, we report the design and synthesis of a new trigonal prismatic organic nanobarrel with two large triangular windows with a diameter of 12.7 Å optimal for the encapsulation of C60 . Remarkably, this organic nanobarrel shows a high affinity for C60 in solvents in which C60 is virtually insoluble, providing stable solutions of C60 .
Collapse
Affiliation(s)
- Saibal Bera
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
| | - Satyajit Das
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810-193AveiroPortugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
- IkerbasqueBasque Foundation for Science48009BilbaoSpain
| |
Collapse
|
9
|
Deng H, Guo Z, Wang Y, Li K, Zhou Q, Ge C, Xu Z, Sato S, Ma X, Sun Z. Modular synthesis, host-guest complexation and solvation-controlled relaxation of nanohoops with donor-acceptor structures. Chem Sci 2022; 13:14080-14089. [PMID: 36540830 PMCID: PMC9728570 DOI: 10.1039/d2sc05804a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2023] Open
Abstract
Carbon nanohoops with donor-acceptor (D-A) structures are attractive electronic materials and biological fluorophores, but their synthesis is usually challenging. Moreover, the preparation of D-A nanohoop fluorophores exhibiting high fluorescence quantum yields beyond 500 nm remains a key challenge. This study presents a modular synthetic approach based on an efficient metal-free cyclocondensation reaction that readily produced nine congeners with D-A or donor-acceptor-donor' (D-A-D') structures, one of which is water-soluble. The tailored molecular design of nanohoops enabled a systematic and detailed study of their host-guest complexation with fullerene, optical properties, and charge transfer (CT) dynamics using X-ray crystallography, fluorescence titration, steady and ultrafast transient absorption spectroscopy, and theoretical calculations. The findings revealed intriguing physical properties associated with D-A motifs, such as tight binding with fullerene, moderate fluorescence quantum yields (37-67%) beyond 540 nm, and unique solvation-controlled CT relaxation of D-A-D' nanohoops, where two CT states (D-A and A-D') can be effectively tuned by solvation, resulting in dramatically changed relaxation pathways in different solvents.
Collapse
Affiliation(s)
- Han Deng
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Zilong Guo
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Yaxin Wang
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Ke Li
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Qin Zhou
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Chang Ge
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Zhanqiang Xu
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Sota Sato
- Department of Applied Chemistry, Integrated Molecular Structure Analysis Laboratory, Social Cooperation Program, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Xiaonan Ma
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Zhe Sun
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300072 China
| |
Collapse
|
10
|
Rothschild DA, Kopcha WP, Tran A, Zhang J, Lipke MC. Gram-scale synthesis of a covalent nanocage that preserves the redox properties of encapsulated fullerenes. Chem Sci 2022; 13:5325-5332. [PMID: 35655559 PMCID: PMC9093146 DOI: 10.1039/d2sc00445c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Discrete nanocages provide a way to solubilize, separate, and tune the properties of fullerenes, but these 3D receptors cannot usually be synthesized easily from inexpensive starting materials, limiting their utility. Herein, we describe the first fullerene-binding nanocage (Cage4+) that can be made efficiently on a gram scale. Cage4+ was prepared in up to 57% yield by the formation of pyridinium linkages between complemantary porphyrin components that are themselves readily accessible. Cage4+ binds C60 and C70 with large association constants (>108 M−1), thereby solubilizing these fullerenes in polar solvents. Fullerene association and redox-properties were subsequently investigated across multiple charge states of the host-guest complexes. Remarkably, neutral and singly reduced fullerenes bind with similar strengths, leaving their 0/1− redox couples minimally perturbed and fully reversible, whereas other hosts substantially alter the redox properties of fullerenes. Thus, C60@Cage4+ and C70@Cage4+ may be useful as solubilized fullerene derivatives that preserve the inherent electron-accepting and electron-transfer capabilities of the fullerenes. Fulleride dianions were also found to bind strongly in Cage4+, while further reduction is centered on the host, leading to lowered association of the fulleride guest in the case of C602−. This report describes the first gram-scale synthesis of a nanocage that can host fullerenes (C60 and C70). The redox properties of the fullerenes are preserved in this host, enabling characterization of complexes with fulleride anions and dianions.![]()
Collapse
Affiliation(s)
- Daniel A Rothschild
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Aaron Tran
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| |
Collapse
|