1
|
Chuang WT, Chen SP, Tsai YB, Sun YS, Lin JM, Chen CY, Tsai YW, Chou CM, Hung YC, Chen TW, Wang WE, Huang CC, Hong PD, Jeng US, Chiang YW. Spontaneous Photonic Jammed Packing of Core-Shell Colloids in Conductive Aqueous Inks for Non-Iridescent Structural Coloration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52856-52866. [PMID: 39174350 DOI: 10.1021/acsami.4c09049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Integrating structural colors and conductivity into aqueous inks has the potential to revolutionize wearable electronics, providing flexibility, sustainability, and artistic appeal to electronic components. This study aims to introduce bioinspired color engineering to conductive aqueous inks. Our self-assembly approach involves mixing poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with sulfonic acid-modified polystyrene (sPS) colloids to generate non-iridescent structural colors in the inks. This spontaneous structural coloration occurs because PEDOT:PSS and sPS colloids can self-assemble into core-shell structures and reversibly cluster into photonic aggregates of maximally random jammed packing within the aqueous environment, as demonstrated by small-angle X-ray scattering. Dissipative particle dynamics simulation confirms that the self-assembly aggregation of PEDOT:PSS chains and sPS colloids can be manipulated by the polymer-colloid interactions. Utilizing the finite-difference time-domain method, we demonstrate that the photonic aggregates of the core-shell colloids achieve close to maximum jammed packing, making them suitable for producing vivid structural colors. These versatile conductive inks offer adjustable color saturation and conductivity, with conductivity levels reaching 36 S cm-1 through the addition of polyethylene glycol oligomer, while enhanced water resistance and mechanical stability are achieved by doping with a cross-linker, poly(ethylene glycol) diglycidyl ether. With these unique features, the inks can create flexible, patterned circuits through processes like coating, writing, and dyeing on large areas, providing eco-friendly, visually appealing colors for customizable, stylish, comfortable, and wearable electronic devices.
Collapse
Affiliation(s)
- Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Shu-Ping Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Yu-Bo Tsai
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Ya-Sen Sun
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Jhih-Min Lin
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Chun-Yu Chen
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Yi-Wei Tsai
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Che-Min Chou
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Yu-Chueh Hung
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tse-Wei Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-En Wang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chao-Chin Huang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Da Hong
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yeo-Wan Chiang
- Department of Materials and Optoelectronic Science and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
2
|
Huo M, Zhu R. Statistical Copolymerization-Induced Self-Assembly. ACS Macro Lett 2024; 13:951-958. [PMID: 39023514 DOI: 10.1021/acsmacrolett.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Statistical copolymers have been extensively used in chemical industries and our daily lives, owing to their ease of synthesis and functionalization. However, self-assembly based on statistical copolymers has been haunted by high interfacial energy, poor stability, and low concentration. We proposed the statistical copolymerization-induced self-assembly (stat-PISA) as a general strategy for one-step preparing stable statistical copolymer assemblies with high solids content. The concept was demonstrated through a model dispersion polymerization system comprising a charged hydrophilic monomer and a core-forming monomer, producing spherical micelles via a spinodal decomposition mechanism with an interconnected network intermediate. The stat-PISA was tunable by varying the fraction of charged monomer, the polymer chain length, and the solids content. The statistical copolymer micelles were demonstrated to be a potential Pickering emulsifier with superior stabilizing performances compared to their block copolymer counterparts. The general applicability of stat-PISA was demonstrated by preparing statistical copolymer assemblies with varying surface charges and chemical compositions. Particularly, this strategy is feasible for conventional free radical polymerization, promising for industrial scale-up.
Collapse
Affiliation(s)
- Meng Huo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruixue Zhu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Oehl G, Naga N, Ziegmann G. Facile Synthesis of Poly(methyl methacrylate) Silica Nanocomposite Monolith by In Situ Free Radical Polymerization of Methyl Methacrylate in the Presence of Functionalized Silica Nanoparticles. ACS OMEGA 2024; 9:16279-16287. [PMID: 38617630 PMCID: PMC11007790 DOI: 10.1021/acsomega.3c10338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/16/2024]
Abstract
Novel porous poly(methyl methacrylate) (PMMA) silica nanocomposites have been produced by utilization of polymerization-induced phase separation in a simple one-pot approach. A facile free radical polymerization of MMA in the presence of surface methacrylate-functionalized silica nanoparticles was carried out in ethanol-based solvents, successfully producing novel, morphologically designable porous nanocomposite monoliths. Differing from standard free radical polymerization in solution, a mixture of good and poor solvents (ethanol/N,N-dimethylformamide ratio) for the resulting polymer was used to trigger spinodal phase separation. The influence of monomer concentration, as well as solvent composition, on the morphology of the resulting porous polymers has been investigated. Porous monolith structures composed of connected particles and co-continuous morphologies were observed under a scanning electron microscope depending on the polymerization conditions. The resulting polymers were insoluble and showed swelling characteristics in some organic solvents that are capable of dissolving regular PMMA, indicating covalent bonds between the functionalized silica nanoparticles and the polymer chains. The presence of silica particles in the final polymer was proven via an ATR-IR analysis. The glass transition temperature of the present PMMA-silica nanocomposite was higher than that of the conventional PMMA. The porous polymer immersed in a mixed organic solvent showed coloration induced by the Christiansen effect.
Collapse
Affiliation(s)
- Grigori Oehl
- Clausthal
Centre for Material Technology, Clausthal
University of Technology, 38678 Clausthal-Zellerfeld, Germany
- Department
of Applied Chemistry, College of Engineering and Graduate School of
Engineering and Science, Shibaura Institute
of Technology, Tokyo 135-8548, Japan
| | - Naofumi Naga
- Department
of Applied Chemistry, College of Engineering and Graduate School of
Engineering and Science, Shibaura Institute
of Technology, Tokyo 135-8548, Japan
| | - Gerhard Ziegmann
- Clausthal
Centre for Material Technology, Clausthal
University of Technology, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
4
|
Jeong H, Gu J, Mwasame P, Patankar K, Yu D, Sing CE. Modeling the competition between phase separation and polymerization under explicit polydispersity. SOFT MATTER 2024; 20:681-692. [PMID: 38164983 DOI: 10.1039/d3sm01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials; in practical applications, this phase separation can be controlled by coupling to polymerization reaction kinetics via a process called 'polymerization-induced phase separation'. We develop a phase-field model for a polymer melt blend using a polymerizing Cahn-Hilliard (pCH) formalism to understand the fundamental processes underlying phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization. In our method, we explicitly model polydispersity in these systems to consider different molecular-weight components that will diffuse at different rates. We first show that this pCH model predicts results consistent with the Carothers predictions for step-growth polymerization kinetics, the Flory-Huggins theory of polymer mixing, and the classical predictions of spinodal decomposition in symmetric polymer blends. The model is then used to characterize (i) the competition between phase separation dynamics and polymerization kinetics, and (ii) the effect of unequal reaction rates between species. For large incompatibility between the species (i.e. high χ), our pCH model demonstrates that the strength for phase separation directly corresponds to the kinetics of phase separation. We find that increasing the reaction rate k̃, first induces faster phase separation but this trend reverses as we further increase k̃ due to the competition between molecular diffusion and polymerization. In this case, phase separation is delayed for faster polymerization rates due to the rapid accumulation of slow-moving, high molecular weight components.
Collapse
Affiliation(s)
- Hyeonmin Jeong
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Junsi Gu
- Dow Chemical Company, Midland, MI, 48667, USA
| | | | | | - Decai Yu
- Dow Chemical Company, Midland, MI, 48667, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Liu JX, Haataja MP, Košmrlj A, Datta SS, Arnold CB, Priestley RD. Liquid-liquid phase separation within fibrillar networks. Nat Commun 2023; 14:6085. [PMID: 37770446 PMCID: PMC10539382 DOI: 10.1038/s41467-023-41528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Complex fibrillar networks mediate liquid-liquid phase separation of biomolecular condensates within the cell. Mechanical interactions between these condensates and the surrounding networks are increasingly implicated in the physiology of the condensates and yet, the physical principles underlying phase separation within intracellular media remain poorly understood. Here, we elucidate the dynamics and mechanics of liquid-liquid phase separation within fibrillar networks by condensing oil droplets within biopolymer gels. We find that condensates constrained within the network pore space grow in abrupt temporal bursts. The subsequent restructuring of condensates and concomitant network deformation is contingent on the fracture of network fibrils, which is determined by a competition between condensate capillarity and network strength. As a synthetic analog to intracellular phase separation, these results further our understanding of the mechanical interactions between biomolecular condensates and fibrillar networks in the cell.
Collapse
Affiliation(s)
- Jason X Liu
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Craig B Arnold
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Rodney D Priestley
- Princeton Materials Institute, Princeton University, Princeton, NJ, 08544, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
6
|
Mukai M, Sato M, Miyadai W, Maruo S. On-Demand Tunability of Microphase Separation Structure of 3D Printing Material by Reversible Addition/Fragmentation Chain Transfer Polymerization. Polymers (Basel) 2023; 15:3519. [PMID: 37688145 PMCID: PMC10490546 DOI: 10.3390/polym15173519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Controlling the phase-separated structure of polymer alloys is a promising method for tailoring the properties of polymers. However, controlling the morphology of phase-separated structures is challenging. Recently, phase-separated structures have been fabricated via 3D printing; however, only a few methods that enable on-demand control of phase separation have been reported. In this study, laser-scanning stereolithography, a vat photopolymerization method, is used to form a phase-separated structure via polymerization-induced microphase separation by varying the scanning speed and using macro-reversible addition/fragmentation chain transfer (macro-RAFT) agents with different average molar masses, along with multiarmed macro-RAFT agents; such structures were used to fabricate 3D-printed parts. Various phase-separated morphologies including sea-island and reverse sea-island were achieved by controlling the laser scanning speed and RAFT type. Heterogeneous structures with different material properties were also achieved by simply changing the laser scanning speed. As the deformation due to shrinkage in the process of cleaning 3D-printed parts depends on the laser scanning speed, shape correction was introduced to suppress the effect of shrinkage and obtain the desired shape.
Collapse
Affiliation(s)
- Masaru Mukai
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Mituki Sato
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.S.); (W.M.)
| | - Wakana Miyadai
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.S.); (W.M.)
| | - Shoji Maruo
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
7
|
Suzuki Y, Onozato S, Shinagawa Y, Matsumoto A. Microporous Structure Formation of Poly(methyl methacrylate) via Polymerization-Induced Phase Separation in the Presence of Poly(ethylene glycol). ACS OMEGA 2022; 7:38933-38941. [PMID: 36340152 PMCID: PMC9631874 DOI: 10.1021/acsomega.2c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
It has been demonstrated that nano- or micro-structured polymeric materials have huge potential as advanced materials. However, most of the current fabricating methods have limitations either in cost or in size. Here, we investigate the bulk polymerization of methyl methacrylate in the presence of poly(ethylene glycol) (PEG). We found that phase separation occurs during bulk polymerization. After removal of PEG via sonication, microscopic structures of poly(methyl methacrylate), including porous structures, co-continuous monolith structures, or particle aggregation structures, are formed. These structures can be controlled by the amount of PEG added and the reaction temperature. The results are summarized in phase diagrams. The addition of PEG significantly affects the reaction kinetics. Phase separation is coupled with the reaction acceleration known as the Trommsdorff effect. As a result, the reaction completes in a shorter time when the PEG amount is higher. We demonstrate surface coating to fabricate an amphiphobic surface, repelling both water and oil. The methods presented here have the potential to fabricate microscopic structures in large areas cost-effectively.
Collapse
Affiliation(s)
- Yasuhito Suzuki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shodai Onozato
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuya Shinagawa
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akikazu Matsumoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
8
|
Zwicker D. The intertwined physics of active chemical reactions and phase separation. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Leguizamon SC, Ahn J, Lee S, Jones BH. Tuneable phase behaviour and glass transition via polymerization-induced phase separation in crosslinked step-growth polymers. SOFT MATTER 2022; 18:4455-4463. [PMID: 35661857 DOI: 10.1039/d2sm00485b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Once limited to chain-growth polymerizations, fine control over polymerization-induced phase separation (PIPS) has recently been demonstrated in rubber-toughened thermoset materials formed through step-growth polymerizations. The domain length scales of these thermoset materials can be elegantly tuned by utilizing a binary mixture of curing agents (CAs) that individually yield disparate morphologies. Importantly, varying the composition of the binary mixture affects characteristics of the materials such as glass transition temperature and tensile behavior. Here, we establish a full phase diagram of PIPS in a rubber-toughened epoxy system tuned by a binary CA mixture to provide a robust framework of phase behaviour. X-Ray scattering in situ and post-PIPS is employed to elucidate the PIPS mechanism whereby an initial polymerization-induced compositional fluctuation causes nanoscale phase separation of rubber and epoxy components prior to local chain crosslinking and potential macrophase separation. We further demonstrate the universality of this approach by alternatively employing binary epoxy or binary rubber mixtures to achieve broad variations in morphology and glass transitions.
Collapse
Affiliation(s)
- Samuel C Leguizamon
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA.
| | - Juhong Ahn
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sangwoo Lee
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Brad H Jones
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA.
| |
Collapse
|
10
|
Fernández-Rico C, Sai T, Sicher A, Style RW, Dufresne ER. Putting the Squeeze on Phase Separation. JACS AU 2022; 2:66-73. [PMID: 35098222 PMCID: PMC8790737 DOI: 10.1021/jacsau.1c00443] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 05/06/2023]
Abstract
Phase separation is a ubiquitous process and finds applications in a variety of biological, organic, and inorganic systems. Nature has evolved the ability to control phase separation to both regulate cellular processes and make composite materials with outstanding mechanical and optical properties. Striking examples of the latter are the vibrant blue and green feathers of many bird species, which are thought to result from an exquisite control of the size and spatial correlations of their phase-separated microstructures. By contrast, it is much harder for material scientists to arrest and control phase separation in synthetic materials with such a high level of precision at these length scales. In this Perspective, we briefly review some established methods to control liquid-liquid phase separation processes and then highlight the emergence of a promising arrest method based on phase separation in an elastic polymer network. Finally, we discuss upcoming challenges and opportunities for fabricating microstructured materials via mechanically controlled phase separation.
Collapse
|
11
|
Richards JA, Martinez VA, Arlt J. Characterising shear-induced dynamics in flowing complex fluids using differential dynamic microscopy. SOFT MATTER 2021; 17:8838-8849. [PMID: 34557882 PMCID: PMC8513683 DOI: 10.1039/d1sm01094h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
Microscopic dynamics reveal the origin of the bulk rheological response in complex fluids. In model systems particle motion can be tracked, but for industrially relevant samples this is often impossible. Here we adapt differential dynamic microscopy (DDM) to study flowing highly-concentrated samples without particle resolution. By combining an investigation of oscillatory flow, using a novel "echo-DDM" analysis, and steady shear, through flow-DDM, we characterise the yielding of a silicone oil emulsion on both the microscopic and bulk level. Through measuring the rate of shear-induced droplet rearrangements and the flow velocity, the transition from a solid-like to liquid-like state is shown to occur in two steps: with droplet mobilisation marking the limit of linear visco-elasticity, followed by the development of shear localisation and macroscopic yielding. Using this suite of techniques, such insight could be developed for a wide variety of challenging complex fluids.
Collapse
Affiliation(s)
- James A Richards
- Edinburgh Complex Fluids Partnership and School of Physics and Astronomy, James Clerk Maxwell Building, Peter Guthrie Tait Road, King's Buildings, Edinburgh, EH9 3FD, UK.
| | - Vincent A Martinez
- Edinburgh Complex Fluids Partnership and School of Physics and Astronomy, James Clerk Maxwell Building, Peter Guthrie Tait Road, King's Buildings, Edinburgh, EH9 3FD, UK.
| | - Jochen Arlt
- Edinburgh Complex Fluids Partnership and School of Physics and Astronomy, James Clerk Maxwell Building, Peter Guthrie Tait Road, King's Buildings, Edinburgh, EH9 3FD, UK.
| |
Collapse
|